• Title/Summary/Keyword: structural fiber

Search Result 2,173, Processing Time 0.025 seconds

Fracture Analysis of Concrete Cylinder by Boundary Element Method (경계요소법에 의한 콘크리트 원통형관의 파괴해석)

  • 송하원;전재홍;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.171-177
    • /
    • 1995
  • Fracture mechanics does work for concrete, provided that one uses a proper, nonlinear form of fracture mechanics in which a finite nonlinear zone at fracture front is being considered. The fracture process zone is a region ahead of a traction-free crack, and the development of model of fracture process zone is most important to describe fracture phenomena in concrete. This paper is about fracture behavior of concrete cylinder under lateral pressure. Concrete cylinders were made of high strength normal connote, steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete and concrete and the fracture behavior such as cracking propagation and ultimate load are observed. The fracture process zone is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve and are implemented to the boundary element technique for the fracture analyses of the cylinders. The experimental results are compared with analysis results and tension-softening curves for the steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete are obtained by back analyses.

  • PDF

Free vibration analysis of damaged composite beams

  • Cunedioglu, Yusuf;Beylergil, Bertan
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.79-92
    • /
    • 2015
  • In this study, free vibration analyses of symmetric laminated cantilever and simply supported damaged composite beams are investigated by using finite element method (FEM). Free vibration responses of damaged beams are examined using Euler Bernoulli beam and classical lamination theories. A computer code is developed by using MATLAB software to determine the natural frequencies of a damaged beam. The local damage zone is assumed to be on the surface lamina of the beam by broken fibers after impact. The damaged zone is modeled as a unidirectional discontinuous lamina with $0^{\circ}$ orientations in this study. Fiber volume fraction ($v_f$), fiber aspect ratio ($L_f/d_f$), damage length ($L_D$) and its location (${\lambda}/L$), fiber orientation and stacking sequence parameters effects on natural frequencies are investigated. These parameters are affected the natural frequency values significantly.

Experimental and numerical investigation of fiber-reinforced slag-based geopolymer precast tunnel lining segment

  • Arass Omer Mawlod;Dillshad Khidhir Hamad Amen Bzeni
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.47-59
    • /
    • 2024
  • In this study, a new sustainable material was proposed to prepare precast tunnel lining segments (TLS), which were produced using a fiber-reinforced slag-based geopolymer composite. Slag was used as the geopolymer binder. In addition, polypropylene and carbon fibers were added to reinforce TLSs. TLSs were examined in terms of flexural performance, load-deflection response, ductility, toughness, crack characteristics, and tunnel boring machine (TBM) thrust force. Simultaneously, numerical simulation was performed using finite element analysis. The mechanical characteristics of the geopolymer composite with a fiber content of 1% were used. The results demonstrated that the flexural performance and load-deflection response of the precast TLSs were satisfactory. Furthermore, the numerical results were capable of predicting and realistically capturing the structural behavior of precast TLSs. Therefore, fiber-reinforced slag-based geopolymer composites can be applied as precast TLSs.

Structural Characterization of Silk Fiber Treated with Calcium Nitrate (질산칼슘 처리 농도에 따른 수축견사의 구조특성)

  • 이광길;이용우
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.2
    • /
    • pp.186-196
    • /
    • 1997
  • The IR crystallinity index of Calcium nitrate treated silk fiber decreased proportionally to the concentration of calcium nitrate. A partial change of conformation was observed in the concentration of over 46.4-47.6% changing from $\beta$-sheet or to random coil in the crystalline region. This is in coincidence with the result of crystallinity index, which was started to be reduced in the concentration range of 46.4-47.6%. A same trend was observed for the X-ray order factor, birefringence, degree of orientation and surface structure. These structural parameters were remarkably changed on the treatment of silk fibers with concentration of 46.4-17, 6% calcium nitrate. Therefore, it seems that there exists a critical concentration of calcium nitrate in affection the structure and morphology of silk fibers. According to the examination of surface morphology, the fine stripe was observed in the direction of fiber axis at 46.4% concentration. However, the treated concentration was exceeded by 47.6%, the cracks were appeared severely on the fiber surface in the transverse direction as well as fiber axis direction. This result might be related to the tensile properties, specially a tenacity of silk fibers. As a result of quantitative analysis of a dilute acid hydrolysis, three different regions, which are known as a amorphous, semi-crystalline and crystalline region, could be obtained. The hydrolysis rate curves were different with various concentrations of treatment and the relative contents of each region could be calculated.

  • PDF

Impact resistance of polypropylene fiber reinforced concrete two-way slabs

  • Al-Rousan, Rajai Z.;Alhassan, Mohammed A.;Al-Salman, Harith
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.373-380
    • /
    • 2017
  • Concrete structures are often subjected to long-term static and short-term dynamic loads. Due to a relatively low tensile strength and energy dissipating characteristics, the impact resistance of concrete is considered poor. This study investigates the feasibility of using polypropylene fibers to improve the impact resistance of reinforced concrete slabs. Fourteen polypropylene fiber reinforced concrete slabs were fabricated and tested using a drop weight test. The effects of slab thickness, fiber volume fractions, and impact energy on the dynamic behaviors were evaluated mainly in terms of impact resistant, crack patterns, and failure modes. The post impact induced strains versus time responses were obtained for all slabs. The results showed that adding the polypropylene fiber at a dosage of 0.90% by volume of concrete leads to significant improvement in the overall structural behavior of the slabs and their resistance to impact loading. Interestingly, the enhancement in the behavior of the slabs using a higher fiber dosage of 1.2% was not as good as achieved with 0.90%.

Effect of Fiber Friction, Yarn Twist, and Splicing Air Pressure on Yarn Splicing Performance

  • Das A.;Ishtiaque S. M.;Parida Jyoti R.
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.72-78
    • /
    • 2005
  • The impact of fiber friction, yarn twist, and splicing air pressure on mechanical and structural properties of spliced portion have been reported in the present paper. The mechanical properties include the tensile and bending related properties and, in the structural properties, the diameter and packing density of the splices are studied. A three variable three level facto­rial design approach proposed by Box and Behnken has been used to design the experiment. The results indicate that there is a strong correlation between retained spliced strength (RSS) and retained splice elongation (RSE) with all the experimental variables. It has been observed that RSS increases with the increase in splice air pressure and after certain level it drops, whereas it consistently increases with the increase in yarn twist. The RSE increases with the increase in both fiber friction and yarn twist. It has also been observed that the yarn twist and splicing air pressure have significant influence on splice diameter, percent increase in diameter and retained packing coefficient, but the fiber friction has negligible influence on these parame­ters. Yarn twist and splicing air pressure has a strong correlation with splice flexural rigidity, where as poor correlation with retained flexural rigidity.

Mechanical behavior of HPFRCC using limestone calcined clay cement (LC3) and oxygen plasma treated PP fibers

  • Sajjad Mirzamohammadi;Masoud Soltani
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.349-362
    • /
    • 2024
  • High-performance fiber-reinforced cement composites (HPFRCC) are new materials created and used to repair, strengthen, and improve the performance of different structural parts. When exposed to tensile tension, these materials show acceptable strain-hardening. All of the countries of the globe currently seem to have a need for these building materials. This study aims to create a low-carbon HPFRCC (high ductility) that is made from materials that are readily available locally which has the right mechanical qualities, especially an increase in tensile strain capacity and environmental compatibility. In order to do this, the effects of fiber volume percent (0%, 0.5%, 1%, and 2%), and determining the appropriate level, filler type (limestone powder and silica sand), cement type (ordinary Portland cement, and limestone calcined clay cement or LC3), matrix hardness, and fiber type (ordinary and oxygen plasma treated polypropylene fiber) were explored. Fibers were subjected to oxygen plasma treatment at several powers and periods (50 W and 200 W, 30, 120, and 300 seconds). The influence of the above listed factors on the samples' three-point bending and direct tensile strength test results has been examined. The results showed that replacing ordinary Portland cement (OPC) with limestone calcined clay cement (LC3) in mixtures reduces the compressive strength, and increases the tensile strain capacity of the samples. Furthermore, using oxygen plasma treatment method (power 200 W and time 300 seconds) enhances the bonding of fibers with the matrix surface; thus, the tensile strain capacity of samples increased on average up to 70%.

Improvement of Structural Performance of RC Beams retrofitted Hybrid Fiber using Recycled Coarse Aggregate and Ground Granulated Blast Furnace Slag (순환굵은골재 및 고로슬래그 미분말을 사용한 하이브리드섬유보강 철근콘크리트 보의 구조성능 개선)

  • Yi, Dong-Ryul;Ha, Gee-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.1-10
    • /
    • 2014
  • In this study, thirteen reinforced concrete beams, ground granulated blast furnace slag, replacing recycled coarse aggregate with PVA fiber (BSPG series) and recycled coarse aggregate with hybrid fiber ($BSPGR_1$, $BSPGR_2$ series), and standard specimen (BSS) were constructed and tested under monotonic loading. Experimental programs were carried out to improve and evaluate the Structural performance of such test specimens, such as the load-displacement, the failure mode, and the maximum load carrying capacity. All the specimens were modeled in 1/2 scale-down size. Test results showed that test specimens ($BSPGR_1$, $BSPGR_2$ series) was increased the compressive strength by 13%, the maximum load carrying capacity by 4~21% and the ductility capacity by 4~28% in comparison with the standard specimen (BSS). And the specimens ($BSPGR_1$, $BSPGR_2$ series) showed enough ductile behavior and stable flexural failure.

Shear Behavior of Prestressed Steel Fiber-Reinforced Concrete at Crack Interfaces (프리스트레스가 도입된 강섬유보강콘크리트의 균열면 전단거동)

  • Kal, Kyoung Wan;Hwang, Jin Ha;Lee, Deuck Hang;Kim, Kang Su;Choi, Il Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.78-88
    • /
    • 2012
  • Although structural concrete is well known for its good economic efficiency, it has limits of structural performance due to the low tensile strength, for which new structural members utilizing various concrete composite materials have been developed. Steel Fiber-Reinforced Concrete(SFRC) has great tensile strength, which is the one of the excellent composite material to complement the weakness of concrete, and it is also considered as a good alternative to prevent the explosive failure of high strength concrete under fire. Also, prestressed concrete members are of great advantages to long span structures and have greater shear strength compared to conventional reinforced concrete members. In this research, thus, a total of 22 direct shear test specimens were fabricated and tested to understand the shear behavior of Steel Fiber-Reinforced Prestressed Concrete(SFR-PSC) members, in which SFRC members combined with prestressing method. Based on the test results, the constitutive equations of shear behavior at crack interfaces were proposed, which provided good estimation on the shear behavior of the SFR-PSC direct shear test specimens.

Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture (CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가)

  • Choi, Se-Jin;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2014
  • In order to prevent brittle failure of concrete, steel fiber reinforcement is effective composite material. However ductility of steel fiber reinforced concrete may be limited due to shrinkage caused by large content of cement binder. Chemical prestressing for steel fiber reinforcement in cement matrix can be induced through expansive admixture and this can increase reinforcing effect of steel fiber. In this study, mechanical performances in concrete with CSA (Calcium sulfoaluminate) expansive admixture and steel fiber reinforcement are evaluated. For this work, steel fiber reinforcement of 1 and 2% of volume ratio and CSA expansive admixture of 10% weight ratio of cement are added in concrete. Mechanical and fracture properties are evaluated in concrete with steel fiber reinforcement and CSA expansive admixture. CSA concrete with steel fiber reinforcement shows increase in tensile strength, initial cracking load, and ductility performance like enlarged fracture energy after cracking. With appropriate using expansive admixture and optimum ratio of steel fiber reinforcement, their interactive action can effectively improve brittle behavior in concrete.