• Title/Summary/Keyword: structural feasibility

Search Result 702, Processing Time 0.026 seconds

Fire Performance Analysis of SLIM AU Composite Beam (슬림 AU 합성보의 내화해석)

  • Kim, Myeong-Han;Oh, Myoung-Ho;Min, Jeong-Ki
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.133-140
    • /
    • 2016
  • SLIM AU(A plus U-shaped) composite beam had been developed for not only reducing the story height in residential and commercial building, but also saving the cost of floor construction. The structural performance and economic feasibility was sufficiently approved by means of structural experiments and analytical studies. Even though fire resistance of the SLIM AU composite beam was evaluated throughout furnace fire test, the fire performance of the composite beam using finite element analysis is not analysed yet. Therefore the predictions of fire resistance simulations with loading as well as temperature distribution of the composite beam are summarized in this paper.

Damage assessment of linear structures by a static approach, I: Theory and formulation

  • Tseng, Shih-Shong
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.181-193
    • /
    • 2000
  • The objective of this research is to propose a new global damage detection parameter, termed as the static defect energy (SDE). This candidate parameter possesses the ability to detect, locate and quantify structural damage. To have a full understanding about this parameter and its applications, the scope of work can be divided into several tasks: theory and formulation, numerical simulation studies, experimental verification and feasibility studies. This paper only deals with the first part of the task. Brief introduction will be given to the dynamic defect energy (DDE) after systematically reviewing the previous works. Process of applying the perturbation method to the oscillatory system to obtain a static expression will be followed. Two implementation methods can be used to obtain SDE equations and the diagrams. Both results are equally good for damage detection.

Pulse-Pre Pump Brillouin Optical Time Domain Analysis-based method monitoring structural multi-direction strain

  • Su, Huaizhi;Yang, Meng;Wen, Zhiping
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.145-155
    • /
    • 2016
  • The Pulse-Pre Pump Brillouin Optical Time Domain Analysis (PPP-BOTDA) technique is introduced to implement the multi-direction strain measurement. The monitoring principle is stated. The layout scheme of optical fibers is proposed. The temperature compensation formula and its realizing method are given. The experiments, under tensile load, combined bending and tensile load, are implemented to validate the feasibility of the proposed method. It is shown that the PPP-BOTDA technique can be used to discriminate the multi-direction strains with high spatial resolution and precision.

Development of Self-Diagnostic Smart Concrete (자가진단형 스마트 콘크리트 개발)

  • Kim Wha-Jung;Kim Ie-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.82-88
    • /
    • 2006
  • In People usually think that smart materials and smart structures have not been developed until recent years. But those kinds of sensors have already been used for sensing damage in a variety of materials and structures. Two typical examples are piezoelectric materials (e.g., PZT) and electric strain gauges. Load cell is an example that utilizes the piezoelectric property to measure the change in physical quantities occurred by applied loads, while strain gauges are used to measure the deformation of compressive and tension members. The feasibility of using smart materials is realized for a monitoring technology when those sensors are used to monitor damages at inside or outsider of the structures. In this study, a fundamental study on the development of self diagnostic smart concrete using PZT, and unsaturated polyester electric resistance sensor.

  • PDF

Elastic Seismic Design of Steel Highrise Buildings in Regions of Moderate Seismicity (중진대 철골조 초고층 건물의 탄성내진설계)

  • Lee Cheol-Ho;Kim Seon-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.741-748
    • /
    • 2006
  • Seismic performance evaluation was conducted for four wind-designed concentrically braced steel highrise buildings in order to check the feasibility of designing steel highrise buildings per elastic seismic design criterion (or strength and stiffness solution) in the regions of strong wind and moderate seismicity. The pushover analysis results revealed that the wind-designed highrise buildings possess significantly increased elastic seismic capacity due to the overstrength resulting from the wind serviceability criterion. The strength demand-to-capacity study showed that, due to the wind-induced overstrength, highrise buildings with a slenderness ratio of larger than four or five can withstand elastically even the maximum considered earthquake at the performance level of immediate occupancy. Based on the analytical results of this study, practical elastic seismic design procedure for steel highrise buildings in the regions of moderate seismicity is proposed.

  • PDF

Improved Genetic Algorithm-Based Damage Detection Technique Using Modal Strain Energy (모드변형에너지를 이용한 향상된 유전알고리즘 기반 손상검색기법)

  • Park Jae-Hyung;Lee Jung-Mi;Kim Jeong-Tae;Ryu Yeon-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.459-466
    • /
    • 2006
  • The objective of this study is to improve the accuracy of damage detection using natural frequency and modal strain energy. The following approaches are used to achieve the goal. First, modal strain energy is introduced and newly GA-based damage detection technique using natural frequency and modal strain energy is proposed. Next, to verify efficiency of the proposed technique, damage scenarios for free-free beams are designed and the vibration modal tests as damage cases are conducted. Finally, feasibility of proposed technique is verified in comparison with a GA-based damage detection technique using natural frequency and mode shape.

  • PDF

Application of Ubiquitous Technologies for Construction Process (건설 프로세스 향상을 위한 유비쿼터스 기술의 적용)

  • Moon Sung-Woo;Hong Seung-Moon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.43-49
    • /
    • 2006
  • Construction CALS has contributed much to the improvement of construction management. Recently, the ubiquitous technology brings another opportunities for expanding tile business horizon in construction. The government policies to upgrade the information technologies in Korean offer an environment in which practical application of ubiquitous becomes more practical. To maintain the level of competitiveness, construction companies need to pay attention to the chance of ubiquitous technologies. This paper introduces the research movement in the construction industry in an attempt to find out the feasibility of ubiquitous technologies such as RFID, USN, etc. The construction process, which is executed in the natural environment, will benefit from the state-of-are information technologies in terms of improved communication interface.

  • PDF

Analysis of seismic response of 3-span continuous curved bridges (3경간 연속곡선교의 지진응답 특성분석)

  • Kim, Sang-Hyo;Lee, Sang-Woo;Cho, Kwang-Il;Park, Boung-Kyu
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.380-387
    • /
    • 2005
  • Little has been understood about the seismic behavior of curved bridges due to the different structural characteristics compared to straight bridges. In this study, a simple numerical model, widely used for seismic analysis, is modified for a more realistic estimation of the seismic behavior. The seismic response of curved bridges obtained with the modified simple numerical model was compared with the result using a more sophisticated model to verify the feasibility. Seismic analyses were performed on three-span continuous curved bridges, which is a structural system widely used in highway structures. Numerical model of the three-span continuous curved bridges were subjected to seismic loads in diverse directions. From the result of the analysis. it was found that the direction of the seismic load have significant effect of the seismic behavior of curved bridges when the central angle exceeds 90 degrees.

  • PDF

Classification and applications of tensegrities (텐서그러티 기본유형 분류 및 응용)

  • Choi, Sun-Young;Park, Sun-Woo;Park, Chan-Soo
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.77-82
    • /
    • 2005
  • Tensegrity is a relatively new sructural system (about more than 50 years old) based on the use of continuous tension-discontinuous compression. In spite of the controversial principles to define these systems, several examples of tensegrity prototypes constructed in IEDS(Institute of Environment Structure Design) are presented illustrating the feasibility of tensegrity as a lightweight structure. Of course, a much more detailed structural investigation would be necessary, but at least in order to achieve the intended purpose, it is essential to understand the structural principles and the fundamental forces of tensegrity. Once this point Is established, the characteristics of these structures are described, as well as applying them to architecture. Consequently, in this work, the patterns of basic module as well as fundamental definition are introduced. Then, the application of tensegrity to architecture has also been mentioned.

  • PDF

Analysis of Hardenability for Carbon Steel using Finite Element Method(II) (유한요소법을 이용한 탄소강의 경화능해석(II))

  • Kim, O.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.76-82
    • /
    • 1999
  • This study presents a methodology to predict the hardenability of quenched carbon steels. The equation of transient heat conduction is analyzed to formulate a cooling curve by a finite element method which incorperates coupled effects of temperature on physical properties, the metallic structures and also the latent heat by phase transformation. The volume traction of martensite and pearlite are the structural analysis for hardenability analysis. In order to demonstrate the feasibility of adopting a full quench model respectively. This procedure could be used as the database for optimal condition of heat treatment processes.

  • PDF