• 제목/요약/키워드: structural feasibility

검색결과 700건 처리시간 0.027초

Identification of prestress-loss in PSC beams using modal information

  • Kim, Jeong-Tae;Yun, Chung-Bang;Ryu, Yeon-Sun;Cho, Hyun-Man
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.467-482
    • /
    • 2004
  • One of the uncertain damage parameters to jeopardize the safety of existing PSC bridges is the loss of the prestress force. A substantial prestress-loss can lead to severe problems in the serviceability and safety of the PSC bridges. In this paper, a nondestructive method to detect prestress-loss in beam-type PSC bridges using a few natural frequencies is presented. An analytical model is formulated to estimate changes in natural frequencies of the PSC bridges under various prestress forces. Also, an inverse-solution algorithm is proposed to detect the prestress-loss by measuring the changes in natural frequencies. The feasibility of the proposed approach is evaluated using PSC beams for which a few natural frequencies were experimentally measured for a set of prestress-loss cases. Numerical models of two-span continuous PSC beams are also examined to verify that the proposed algorithm works on more complicated cases.

Continuous deformation measurement for track based on distributed optical fiber sensor

  • He, Jianping;Li, Peigang;Zhang, Shihai
    • Structural Monitoring and Maintenance
    • /
    • 제7권1호
    • /
    • pp.1-12
    • /
    • 2020
  • Railway tracks are the direct supporting structures of the trains, which are vulnerable to produce large deformation under the temperature stress or subgrade settlement. The health status of track is critical, and the track should be routinely monitored to improve safety, lower the risk of excess deformation and provide reliable maintenance strategy. In this paper, the distributed optical fiber sensor was proposed to monitor the continuous deformation of the track. In order to validate the feasibility of the monitoring method, two deformation monitoring tests on one steel rail model in laboratory and on one real railway tack in outdoor were conducted respectively. In the model test, the working conditions of simply supported beam and continuous beam in the rail model under several concentrated loads were set to simulate different stress conditions of the real rail, respectively. In order to evaluate the monitoring accuracy, one distributed optical fiber sensor and one fiber Bragg grating (FBG) sensor were installed on the lower surface of the rail model, the strain measured by FBG sensor and the strain calculated from FEA were taken as measurement references. The model test results show that the strain measured by distributed optical fiber sensor has a good agreement with those measured by FBG sensor and FEA. In the outdoor test, the real track suffered from displacement and temperature loads. The distributed optical fiber sensor installed on the rail can monitor the corresponding strain and temperature with a good accuracy.

비표면처리 강판을 사용한 iFLASH 시스템의 휨성능 평가 (Flexural Behavior of iFLASH System with No Blast Metal Cleaned Steel Plates)

  • 김용열;류재호;윤성원;주영규
    • 복합신소재구조학회 논문집
    • /
    • 제6권4호
    • /
    • pp.30-37
    • /
    • 2015
  • iFLASH System is new structural floor system which consists of sandwich panels filled with nano-composite. The nano-composite has low specific gravity and high bonding strength with steel plates. The bonding strength is one of important factors for structural performance of iFLASH System and it can further be improved by surface preparation such as blast metal cleaning. However, using none blast steel plates is recommended since surface preparation generates additional fabrication time and cost. In this study, a bonding strength test and bending experiment were conducted to check feasibility of applying none blast steel plates to iFLASH System. Moreover, stress in bonding plane between steel plates and nano-composite was analytically evaluated by finite element method. Consequently, flexural capacity of the specimen was 11% higher than theoretically calibrated value and its flexural behavior was structurally efficient without defect of bonding.

동결챔버내의 열 흐름에 관한 실험 및 수치해석적 연구 (A Experimental and Numerical Studies of Thermal Flow Motion in a Geothermal Chamber)

  • 송원근;김영진;이형일
    • 한국전산구조공학회논문집
    • /
    • 제16권3호
    • /
    • pp.219-228
    • /
    • 2003
  • 강관이 매설되어 있는 폐쇄형 시스템에서 동결된 화강토의 온도분포에 관한 수치해석 및 실험적 연구가 수행되었다. 실험을 통해 측정된 부동수분량의 온도상관식을 제시하였으며, Lachenbruch의 열전도율 식을 사용하여 열전도율 측정값을 비교·분석하였다. 원형 단면 강관이 매설된 모형토조의 동결챔버를 제작하여 동결토의 온도를 측정하고 유한요소 수치해석을 수행하여 실험 결과와 비교하였다. 수치해석시 동결된 화강토의 잠열효과가 고려되었다.

Flat-bottomed design philosophy of Y-typed bifurcations in hydropower stations

  • Wang, Yang;Shi, Chang-zheng;Wu, He-gao;Zhang, Qi-ling;Su, Kai
    • Structural Engineering and Mechanics
    • /
    • 제57권6호
    • /
    • pp.1085-1105
    • /
    • 2016
  • The drainage problem in bifurcations causes pecuniary losses when hydropower stations are undergoing periodic overhaul. A new design philosophy for Y-typed bifurcations that are flat-bottomed is proposed. The bottoms of all pipe sections are located at the same level, making drainage due to gravity possible and shortening the draining time. All fundamental curves were determined, and contrastive analysis with a crescent-rib reinforced bifurcation in an actual project was conducted. Feasibility demonstrations were researched including structural characteristics based on finite element modeling and hydraulic characteristics based on computational fluid dynamics. The new bifurcation provided a well-balanced shape and reasonable stress state. It did not worsen the flow characteristics, and the head loss was considered acceptable. The proposed Y-typed bifurcation was shown to be suitable for pumped storage power stations.

비동질 반무한 평면에서의 비례경계유한요소법 (Scaled Boundary Finite Element Methods for Non-Homogeneous Half Plane)

  • 이계희
    • 한국전산구조공학회논문집
    • /
    • 제20권2호
    • /
    • pp.127-136
    • /
    • 2007
  • 본 논문에서는 비동질 반무한 평면에 대한 비례경계유한요소법의 식을 유도하고 수치예제를 해석하였다. 비례경계유한 요소법은 편미분 방정식을 경계방향으로는 유한요소와 같은 근사를 통해서 약화시키고 방사방향으로는 정확해를 사용하는 반 해석적인 방법으로, 방사방향으로 멱함수를 따라 탄성계수가 변화되는 반무한 평면에 대해서 관계식을 가상일의 원리에 근거하여 새로이 유도하였다. 이 과정에서 반무한평면의 거동이 Euler-Cauchy방정식을 따름을 보이고, 기존의 동질 반무한평면의 해석시 도입되던 로그모드가 비동질 반무한 평면의 해석에는 유효하지 않음을 보였다. 수치예제를 통하여 유도된 식이 타당한 거동을 보임을 증명하고 이 접근법이 실제 공학적 문제의 해결에 있어서 유용함을 보였다.

유연 구조물의 진동제어를 위한 선형모터댐퍼 (Linear Motor Damper for Vibration Control of Flexible Structure)

  • 강호식;송오섭;김영찬;김두훈;심상덕
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.492-498
    • /
    • 2005
  • A linear motor damper based on the linear motor principle is developed to suppress structural vibration. This paper deals with the design, analysis, and manufacture of the linear motor damper. It is designed to be able to move the auxiliary mass of 1500kg, up to $\pm250mm$ stroke. The control algorithm was designed based on LQG control logic with acceleration feedback. Through performance tests, it was confirmed that the developed hybrid mass damper has reliable feasibility as a control device for structural control. In addition, the linear motor damper is more economical than both hydraulic and electric motor driving mass damper with respect to simple structure and low maintenance cost. A series of performance tests of the linear motor damper system were carried out on the full-scale steel frame structure in UNISON Corporation. Through the performance tests, it was confirmed that acceleration levels are reduced down 10dB for first mode of structure

Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses

  • Nguyen, Tuan-Cuong;Huynh, Thanh-Canh;Yi, Jin-Hak;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • 제24권4호
    • /
    • pp.385-403
    • /
    • 2017
  • In recent years, the wind energy has played an increasingly important role in national energy sector of many countries. To harvest more electric power, the wind turbine (WT) tower structure becomes physically larger, which may cause more risks during long-term operation. Associated with the great development of WT projects, the number of accidents related to large-scaled WT has also been increased. Therefore, a structural health monitoring (SHM) system for WT structures is needed to ensure their safety and serviceability during operational time. The objective of this study is to develop a hybrid damage detection method for WT tower structures by measuring vibration and impedance responses. To achieve the objective, the following approaches are implemented. Firstly, a hybrid damage detection scheme which combines vibration-based and impedance-based methods is proposed as a sequential process in three stages. Secondly, a series of vibration and impedance tests are conducted on a lab-scaled model of the WT structure in which a set of bolt-loosening cases is simulated for the segmental joints. Finally, the feasibility of the proposed hybrid damage detection method is experimentally evaluated via its performance during the damage detection process in the tested model.

Improved prestressed concrete girder with hybrid segments system

  • Yim, Hong Jae;Yang, Jun Mo;Kim, Jin Kook
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.183-190
    • /
    • 2018
  • The prestressed concrete (PSC) technology that was first developed by Freyssinet has significantly improved over the past century in terms of materials and structural design in order to build longer, slender, and more economic structures. The application of prestressing method in structures, which is determined by the pre-tension or post-tension processes, is also affected by the surrounding conditions such as the construction site, workforce skills, and local transportation regulations. This study proposes a prestressed concrete girder design based on a hybrid segment concept. The adopted approach combines both pre-tension and post-tension methods along a simple span bridge girder. The girder was designed using newly developed 2400 MPa PS strands and 60 MPa high-strength concrete. The new concept and high strength materials allowed longer span, lower girder depth, less materials, and slender design without affecting the lateral stability of the girder. In order to validate the applicability of the proposed hybrid prestressed segments girder, a full-scale 35 m girder was fabricated, and experimental tests were performed under various fatigue and static loading conditions. The experimental results confirmed the feasibility of the proposed long-span girder as its performance meets the railway girder standards. In addition, the comparison between the measured load-displacement curve and the simulation results indicate that simulation analysis can predict the behavior of hybrid segments girders.

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

  • An, Joon-Sang;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • 제16권3호
    • /
    • pp.321-329
    • /
    • 2018
  • Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.