• Title/Summary/Keyword: structural feasibility

Search Result 700, Processing Time 0.025 seconds

Feasibility Study of High Strength Steel on Steel Bridge (고강도 강재의 강교량 적용성에 관한 연구)

  • Jeon, Jun Chang;Kim, Seok Tae;Kyung, Kab Soo;Lee, Hee Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.603-612
    • /
    • 2002
  • Numerical analyses have been carried out in order to check the applicability of high-strength steel to a medium-sized steel bridge. Using the yield strength of steel, Average Daily Truck Traffic (ADTT), and fatigue grade of structural detail as analytical parameters, the minimum weight sections that satisfy the limit states of the AASHTO LRFD design specification were determined through an optimization scheme. Likewise, the effects of the number of girders and span length on the applicability of high-strength steel were evaluated. Results show that high-strength steel may be employed in the steel bridge, since steel weight decreases with increasing yield strength regardless of the fatigue effect. Nonetheless, appropriate countermeasures against fatigue should be determined since it is a major factor in the effective use of high-strength steel in steel bridges.

Degradation Estimation of 2.25Cr-1Mo Steel by Ultrasonic Guided Wave (유도초음파를 이용한 2.25Cr-1Mo재의 열화도 평가)

  • Park, Ik-Keun;Park, Un-Su;Lee, Sang-Young;Kwun, Sook-In;Cho, Youn-Ho;Yoon, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.415-424
    • /
    • 2001
  • The destructive method is reliable and widely used for the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials by nondestructive evaluation is strongly desired. In this paper, the use of guided wave was suggested for the evaluation on thermally damaged 2.25Cr-1Mo steel as an alternative way to compensate for limitations of fracture tests. The observation of microstructure variations of the material including carbide precipitation increase and spheroidization near grain boundary was conducted and the correlation with the guided wave features such as energy loss ration and group velocity changes was investigated. Through this study, the feasibility of ultrasonic guided wave evaluation for thermally damaged materials was explored.

  • PDF

Vibration Analysis of PCB Manufacturing System Using Maskless Exposure Method (Maskless 방식을 이용한 PCB생산시스템의 진동 해석)

  • Jang, Won-Hyuk;Lee, Jae-Mun;Cho, Myeong-Woo;Kim, Joung-Su;Lee, Chul-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1322-1328
    • /
    • 2009
  • This paper presents vibration analysis of maskless exposure module in printed circuit board(PCB) manufacturing system. In order to complete exposure process in PCB, masking type module has been widely used in electronics industries. However, masking process confronts some limitations of application due to higher production cost for masking as well as lower printing resolution. Therefore, maskless exposure module is started to be in the spotlight for flexible production system to meet the needs of fabrication in variable patterns at low cost. Since maskless exposure process adopts direct patterning to PCB, vibration problems become more critical compared to conventional masking type process. Moreover, movements of exposure engine as well as stage generate vibration sources in the system. Thus, it is imperative to analyze the vibration characteristics for the maskless exposure module to improve the quality and accuracy of PCB. In this study, vibration analysis using the finite element analysis is conducted to identify the critical structural parts deteriorating vibration performance. Also, Experimental investigations are conducted by single/dual encoder measurement process under the operating module speed. Measurement points of vibration are selected by three places, which are base of stage, exposure engine and top of stage, to check the effect of vibration from the exposure engine. Comparisons between analysis results and experimental measurement are conducted to confirm the accuracy of analysis results including the developed FE model. Finally, this studies show feasibility of optimal design using the developed FE analysis model.

Damage Localization of Bridges with Variational Autoencoder (Variational Autoencoder를 이용한 교량 손상 위치 추정방법)

  • Lee, Kanghyeok;Chung, Minwoong;Jeon, Chanwoong;Shin, Do Hyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.233-238
    • /
    • 2020
  • Most deep learning (DL) approaches for bridge damage localization based on a structural health monitoring system commonly use supervised learning-based DL models. The supervised learning-based DL model requires the response data obtained from sensors on the bridge and also the label which indicates the damaged state of the bridge. However, it is impractical to accurately obtain the label data in fields, thus, the supervised learning-based DL model has a limitation in that it is not easily applicable in practice. On the other hand, an unsupervised learning-based DL model has the merit of being able to train without label data. Considering this advantage, this study aims to propose and theoretically validate a damage localization approach for bridges using a variational autoencoder, a representative unsupervised learning-based DL network: as a result, this study indicated the feasibility of VAE for damage localization.

Seismic performance assessments of precast energy dissipation shear wall structures under earthquake sequence excitations

  • Zhang, Hao;Li, Chao;Wang, Zhi-Fang;Zhang, Cai-Yan
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.147-162
    • /
    • 2020
  • This paper presents a novel precast energy dissipation shear wall (PEDSW) structure system that using mild steel dampers as dry connectors at the vertical joints to connect adjacent wall panels. Analytical studies are systematically conducted to investigate the seismic performance of the proposed PEDSW under sequence-type ground motions. During earthquake events, earthquake sequences have the potential to cause severe damage to structures and threaten life safety. To date, the damage probability of engineering structures under earthquake sequence has not been included in structural design codes. In this study, numerical simulations on single-story PEDSW are carried out to validate the feasibility and reliability of using mild steel dampers to connect the precast shear walls. The seismic responses of the PEDSW and cast-in-place shear wall (CIPSW) are comparatively studied based on nonlinear time-history analyses, and the effectiveness of the proposed high-rise PEDSW is demonstrated. Next, the foreshock-mainshock-aftershock type earthquake sequences are constructed, and the seismic response and fragility curves of the PEDSW under single mainshock and earthquake sequences are analyzed and compared. Finally, the fragility analysis of PEDSW structure under earthquake sequences is performed. The influences of scaling factor of the aftershocks (foreshocks) to the mainshocks on the fragility of the PEDSW structure under different damage states are investigated. The numerical results reveal that neglecting the effect of earthquake sequence can lead to underestimated seismic responses and fragilities, which may result in unsafe design schemes of PEDSW structures.

A dissipative family of eigen-based integration methods for nonlinear dynamic analysis

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.541-557
    • /
    • 2020
  • A novel family of controllable, dissipative structure-dependent integration methods is derived from an eigen-based theory, where the concept of the eigenmode can give a solid theoretical basis for the feasibility of this type of integration methods. In fact, the concepts of eigen-decomposition and modal superposition are involved in solving a multiple degree of freedom system. The total solution of a coupled equation of motion consists of each modal solution of the uncoupled equation of motion. Hence, an eigen-dependent integration method is proposed to solve each modal equation of motion and an approximate solution can be yielded via modal superposition with only the first few modes of interest for inertial problems. All the eigen-dependent integration methods combine to form a structure-dependent integration method. Some key assumptions and new techniques are combined to successfully develop this family of integration methods. In addition, this family of integration methods can be either explicitly or implicitly implemented. Except for stability property, both explicit and implicit implementations have almost the same numerical properties. An explicit implementation is more computationally efficient than for an implicit implementation since it can combine unconditional stability and explicit formulation simultaneously. As a result, an explicit implementation is preferred over an implicit implementation. This family of integration methods can have the same numerical properties as those of the WBZ-α method for linear elastic systems. Besides, its stability and accuracy performance for solving nonlinear systems is also almost the same as those of the WBZ-α method. It is evident from numerical experiments that an explicit implementation of this family of integration methods can save many computational efforts when compared to conventional implicit methods, such as the WBZ-α method.

Multi-camera System Calibration with Built-in Relative Orientation Constraints (Part 2) Automation, Implementation, and Experimental Results

  • Lari, Zahra;Habib, Ayman;Mazaheri, Mehdi;Al-Durgham, Kaleel
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.205-216
    • /
    • 2014
  • Multi-camera systems have been widely used as cost-effective tools for the collection of geospatial data for various applications. In order to fully achieve the potential accuracy of these systems for object space reconstruction, careful system calibration should be carried out prior to data collection. Since the structural integrity of the involved cameras' components and system mounting parameters cannot be guaranteed over time, multi-camera system should be frequently calibrated to confirm the stability of the estimated parameters. Therefore, automated techniques are needed to facilitate and speed up the system calibration procedure. The automation of the multi-camera system calibration approach, which was proposed in the first part of this paper, is contingent on the automated detection, localization, and identification of the object space signalized targets in the images. In this paper, the automation of the proposed camera calibration procedure through automatic target extraction and labelling approaches will be presented. The introduced automated system calibration procedure is then implemented for a newly-developed multi-camera system while considering the optimum configuration for the data collection. Experimental results from the implemented system calibration procedure are finally presented to verify the feasibility the proposed automated procedure. Qualitative and quantitative evaluation of the estimated system calibration parameters from two-calibration sessions is also presented to confirm the stability of the cameras' interior orientation and system mounting parameters.

Current Status on the Development and Application of Fatigue Monitoring System for Nuclear Power Plants (원전 피로 감시 시스템 개발 및 적용 현황)

  • Boo, Myung Hwan;Lee, Kyoung Soo;Oh, Chang Kyun;Kim, Hyun Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.1-18
    • /
    • 2017
  • Metal fatigue is an important aging mechanism that material characteristics can be deteriorated when even a small load is applied repeatedly. An accurate fatigue evaluation is very important for component structural integrity and reliability. In the design stage of a nuclear power plant, the fatigue evaluations of the Class 1 components have to be performed. However, operating experience shows that the design evaluation can be very conservative due to conservatism in the transient severity and number of occurrence. Therefore, the fatigue monitoring system has been considered as a practical mean to ensure safe operation of the nuclear power plants. The fatigue monitoring system can quantify accumulated fatigue damage up to date for various plant conditions. The purpose of this paper is to describe the fatigue monitoring procedure and to introduce the fatigue monitoring program developed by the authors. The feasibility of the fatigue monitoring program is demonstrated by comparing with the actual operating data and finite element analysis results.

Evaluation of the Applicability of CLSM by Numerical Method and Field Test (현장시험과 수치해석에 의한 관거 뒤채움용 CLSM 적용성 평가)

  • Nam, Joongwoo;Byun, Yoshep;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.5-12
    • /
    • 2013
  • The safety and structural integrity of buried pipes are usually at risk from constructing loading and compaction of backfill materials. The backfill material should be strong enough to help resistance and redistribute loads so that the buried pipe remains unaffected. Due to the many problems associated with buried pipes, there have been multiple studies on the development of a sustainable backfill material. In this study, a Controlled Low Strength Material made of coal ash was considered as a buried pipe backfill material. To determine the feasibility and performance of this backfill material, a numerical simulation was conducted with the results confirmed by a field test. Results showed maximum settlement to be 2 mm with the elastic strain of the buried pipe to be about 0.006.

Chemical Stability of Conductive Ceramic Anodes in LiCl-Li2O Molten Salt for Electrolytic Reduction in Pyroprocessing

  • Kim, Sung-Wook;Kang, Hyun Woo;Jeon, Min Ku;Lee, Sang-Kwon;Choi, Eun-Young;Park, Wooshin;Hong, Sun-Seok;Oh, Seung-Chul;Hur, Jin-Mok
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.997-1001
    • /
    • 2016
  • Conductive ceramics are being developed to replace current Pt anodes in the electrolytic reduction of spent oxide fuels in pyroprocessing. While several conductive ceramics have shown promising electrochemical properties in small-scale experiments, their long-term stabilities have not yet been investigated. In this study, the chemical stability of conductive $La_{0.33}Sr_{0.67}MnO_3$ in $LiCl-Li_2O$ molten salt at $650^{\circ}C$ was investigated to examine its feasibility as an anode material. Dissolution of Sr at the anode surface led to structural collapse, thereby indicating that the lifetime of the $La_{0.33}Sr_{0.67}MnO_3$ anode is limited. The dissolution rate of Sr is likely to be influenced by the local environment around Sr in the perovskite framework.