• Title/Summary/Keyword: structural feasibility

Search Result 700, Processing Time 0.024 seconds

ANN-Based Real-Time Damage Detection Technique Using Acceleration Signals in Beam-Type Structures (보 구조물의 가속도 신호를 이용한 인공신경망 기반 실시간 손상검색기법)

  • Park, Jae-Hyung;Lee, Yong-Hwan;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.229-237
    • /
    • 2007
  • In this study, an artificial neural network (ANN)-based damage detection algorithm using acceleration signals is developed for real-time alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed tot damage detection in real time. The cross-covariance of two acceleration-signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained lot potential loading Patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.

Damage Evaluation of a Railroad Bridge Using Time-domain Deflection Shape (시간영역 변형형상을 이용한 철도교량의 손상평가)

  • Choi, Sang-Hyun;Lim, Nam-Hyoung;Kang, Young-Jong
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.129-134
    • /
    • 2009
  • To ensure the safety and functionality of a railroad bridge, maintaining the integrity of the bridge via continuous structural health monitoring is important. However, most structural integrity monitoring methods proposed to date are based on modal responses which require the extracting process and have limited availability. In this paper, the applicability of the existing damage identification method based on free-vibration reponses to time-domain deflection shapes due to moving train load is investigated. Since the proposed method directly utilizes the time-domain responses of the structure due to the moving vehicles, the extracting process for modal responses can be avoided, and the applicability of structural health evaluation can be enhanced. The feasibility of the presented method is verified via a numerical example of a simple plate girder bridge.

Evaluation of Seismic Performances on Prestressed Composite Coupling Beams with Discontinuous Webs (불연속웨브가 도입된 프리스트레스트 합성연결보에 대한 내진성능 평가)

  • Oh, Jae Yuel;Lee, Deuck Hang;Choi, Seung Ho;Kim, Kang Su;Yi, Seong Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.133-142
    • /
    • 2013
  • The shear wall system with coupling beams has been known as an effective means for moderate and high rise buildings up to 40 stories, because this structural system can provide the enhanced lateral stiffness compared to individual shear walls. Typical reinforced concrete coupling beams have difficulties in construction due to complicated reinforcing work on site, and steel coupling beams also have disadvantages in economical point of view because of a large number of stiffeners required for its stability under lateral loading. To overcome these disadvantages in existing coupling beam systems, this study developed the prestressed composite coupling beam with discontinuous webs, which have improved constructability, economic feasibility, and reduced sectional size. The reversed cyclic loading test on two prestressed composite coupling beams with discontinuous webs having different shear reinforcement ratios have been conducted to investigate their structural performances, and test results showed that the proposed composite coupling beams had good seismic performances.

A Study on Controlling the Negative Reaction of Cable Stayed Bridge Considering Constructability and Economy : Vam Cong Cable Stayed Bridge in Vietnam (시공성 및 경제성을 고려한 사장교 부반력 제어 연구 : 베트남 밤콩 사장교 사례)

  • Lee, Yong-Jin;Lho, Byeong-Cheol;Kim, Chang-Kyo;Bae, Sang-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.87-95
    • /
    • 2014
  • Cable stayed bridge is supported by cables and the negative reaction occurs by cables at anchor pier. To solve this problem, the proper side span ratio and the negative reaction measure of anchor pier are needed. And structural system of cable stayed bridge is determined by solution of the negative reaction as installation of the intermediate pier, counterweight and so on. In feasibility study, Vam Cong bridge was planned as 5 span cable stayed bridge. However, it was changed to 3 span cable stayed bridge in detailed design because of constructability and economy. The intermediate pier was excluded in order to improve the constructability, and side span ratio increased to control the negative reaction. As a result, Vam Cong bridge secure constructability, structural safety, and efficiency.

Estimation of Structural Dynamic Responses Using Partial Response Measurements (부분적 측정데이타를 이용한 구조시스템의 동적응답 추정기법)

  • 김학수;양경택
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.75-85
    • /
    • 2000
  • When applying a system identification technique, which incorporates an experimental model to a corresponding finite element model of a structure, one of the major problems is the large difference in the numbers of degrees of freedom (dof) between the two models. While there are large number of dofs in a finite element model, the number of measurement points is practically limited. So it is very difficult to incorporate them. Especially rotational dofs are hard to measure. In this study a method is presented for estimating structural dynamic responses at unmeasurable locations in frequency domain. The proposed method is tested numerically and the feasibility for practical application has been demonstrated through an example structure under moving loads, where translational and rotational dofs of beam at a center point are estimated from the partial measurements of responses at accessible points.

  • PDF

Structural Joint Damage Assessment Using Neural Networks (신경망을 이용한 구조물 접합부의 손상도 추정)

  • 방은영;이진학;윤정방
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.35-46
    • /
    • 1998
  • Structural damage is used to be modeled through reductions in the stiffness of structural elements for the purpose of damage estimation of structural system. In this study, the concept of joint damage is employed for more realistic damage assessment of a steel structure. The joint damage is estimated damage based on the mode shape informations using neural networks, The beam-to-column connection in a steel frame structure is represented by a rotational spring at the fixed end of a beam element. The severity of joint damage is defined as the reduction ratio of the connection stiffness with respect to the value of the intact joint. The concept of the substructural identification is used for the localized damage assessment in a large structure. The feasibility of the proposed method is examined using an example with simulated data. It has been found that the joint damages can be reasonably estimated for the case with the measurements of the mode vectors subjected to noise.

  • PDF

Two-stage damage identification for bridge bearings based on sailfish optimization and element relative modal strain energy

  • Minshui Huang;Zhongzheng Ling;Chang Sun;Yongzhi Lei;Chunyan Xiang;Zihao Wan;Jianfeng Gu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.715-730
    • /
    • 2023
  • Broad studies have addressed the issue of structural element damage identification, however, rubber bearing, as a key component of load transmission between the superstructure and substructure, is essential to the operational safety of a bridge, which should be paid more attention to its health condition. However, regarding the limitations of the traditional bearing damage detection methods as well as few studies have been conducted on this topic, in this paper, inspired by the model updating-based structural damage identification, a two-stage bearing damage identification method has been proposed. In the first stage, we deduce a novel bearing damage localization indicator, called element relative MSE, to accurately determine the bearing damage location. In the second one, the prior knowledge of bearing damage localization is combined with sailfish optimization (SFO) to perform the bearing damage estimation. In order to validate the feasibility, a numerical example of a 5-span continuous beam is introduced, also the noise robustness has been investigated. Meanwhile, the effectiveness and engineering applicability are further verified based on an experimental simply supported beam and actual engineering of the I-40 Bridge. The obtained results are good, which indicate that the proposed method is not only suitable for simple structures but also can accurately locate the bearing damage site and identify its severity for complex structure. To summarize, the proposed method provides a good guideline for the issue of bridge bearing detection, which could be used to reduce the difficulty of the traditional bearing failure detection approach, further saving labor costs and economic expenses.

Response evaluation and vibration control of a transmission tower-line system in mountain areas subjected to cable rupture

  • Chen, Bo;Wu, Jingbo;Ouyang, Yiqin;Yang, Deng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.151-171
    • /
    • 2018
  • Transmission tower-line systems are commonly slender and generally possess a small stiffness and low structural damping. They are prone to impulsive excitations induced by cable rupture and may experience strong vibration. Excessive deformation and vibration of a transmission tower-line system subjected to cable rupture may induce a local destruction and even failure event. A little work has yet been carried out to evaluate the performance of transmission tower-line systems in mountain areas subjected to cable rupture. In addition, the control for cable rupture induced vibration of a transmission tower-line system has not been systematically conducted. In this regard, the dynamic response analysis of a transmission tower-line system in mountain areas subjected to cable rupture is conducted. Furthermore, the feasibility of using viscous fluid dampers to suppress the cable rupture-induced vibration is also investigated. The three dimensional (3D) finite element (FE) model of a transmission tower-line system is first established and the mathematical model of a mountain is developed to describe the equivalent scale and configuration of a mountain. The model of a tower-line-mountain system is developed by taking a real transmission tower-line system constructed in China as an example. The mechanical model for the dynamic interaction between the ground and transmission lines is proposed and the mechanical model of a viscous fluid damper is also presented. The equations of motion of the transmission tower-line system subjected to cable rupture without/with viscous fluid dampers are established. The field measurement is carried out to verify the analytical FE model and determine the damping ratios of the example transmission tower-line system. The dynamic analysis of the tower-line system is carried out to investigate structural performance under cable rupture and the validity of the proposed control approach based on viscous fluid dampers is examined. The made observations demonstrate that cable rupture may induce strong structural vibration and the implementation of viscous fluid dampers with optimal parameters can effectively suppress structural responses.

Temperature Compensation Technique for Steel Sleeve Packaged FBG Strain Sensor and Its Application in Structural Monitoring

  • Yun, Ying-Wei;Jang, Il-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.1-5
    • /
    • 2008
  • As bare Fiber Bragg Grating (FBG) sensors are very fragile, bare FBG without encapsulation is not properly applied in practical infrastructures directly due to the harsh environment in practical engineering. Steel sleeve packaged FBG strain sensor is widely used in civil engineering. Since FBG senses both strain and temperature simultaneously, for accurate measurement of strain, temperature compensation for FBG strain sensors is indispensable. In this paper, based on the FBG's strain and temperature sensing principles, the temperature compensation techniques for steel sleeve packaged FBG sensors are brought forward. And the experiment of concrete early-age shrinkage monitoring by dual FBG sensors is carried out to test the feasibility of the temperature compensation technique.

Feasibility study for blind-bolted connections to concrete-filled circular steel tubular columns

  • Goldsworthy, H.M.;Gardner, A.P.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.463-478
    • /
    • 2006
  • The design of structural frameworks for buildings is constantly evolving and is dependent on regional issues such as loading and constructability. One of the most promising recent developments for low to medium rise construction in terms of efficiency of construction, robustness and aesthetic appearance utilises concrete-filled steel tubular sections as the columns in a moment-resisting frame. These are coupled to rigid or semi-rigid connections to composite steel-concrete beams. This paper includes the results of a pilot experimental programme leading towards the development of economical, reliable connections that are easily constructed for this type of frame. The connections must provide the requisite strength, stiffness and ductility to suit gravity loading conditions as well as gravity combined with the governing lateral wind or earthquake loading. The aim is to develop connections that are stiffer, less expensive and easier to construct than those in current use. A proposed fabricated T-stub connection is to be used to connect the beam flanges and the column. These T-stubs are connected to the column using "blind bolts" with extensions, allowing installation from the outside of the tube. In general, the use of the extensions results in a dramatic increase in the strength and stiffness of the T-stub to column connection in tension, since the load is shared between membrane action in the tube wall and the anchorage of the bolts through the extensions into the concrete.