• 제목/요약/키워드: structural engineering

검색결과 25,519건 처리시간 0.041초

A versatile small-scale structural laboratory for novel experimental earthquake engineering

  • Chen, Pei-Ching;Ting, Guan-Chung;Li, Chao-Hsien
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.337-348
    • /
    • 2020
  • Experimental testing has been considered as one of the most straightforward approaches to realize the structural behavior for earthquake engineering studies. Recently, novel and advanced experimental techniques, which combine numerical simulation with experimental testing, have been developed and applied to structural testing practically. However, researchers have to take the risk of damaging specimens or facilities during the process of developing and validating new experimental methods. In view of this, a small-scale structural laboratory has been designed and constructed in order to verify the effectiveness of newly developed experimental technique before it is applied to large-scale testing for safety concerns in this paper. Two orthogonal steel reaction walls and one steel T-slotted reaction floor are designed and analyzed. Accordingly, a large variety of experimental setups can be completed by installing servo-hydraulic actuators and fixtures depending on different research purposes. Meanwhile, a state-of-the-art digital controller and multiple real-time computation machines are allocated. The integration of hardware and software interfaces provides the feasibility and flexibility of developing novel experimental methods that used to be difficult to complete in conventional structural laboratories. A simple experimental demonstration is presented which utilizes part of the hardware and software in the small-scale structural laboratory. Finally, experimental layouts of future potential development and application are addressed and discussed, providing the practitioners with valuable reference for experimental earthquake engineering.

Toward a paradigm for civil structural control

  • Casciati, S.;Chassiakos, A.G.;Masri, S.F.
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.981-1004
    • /
    • 2014
  • Structural control is a very broad field combining the areas of automatic control and structural engineering, with applications ranging from aerospace and mechanical engineering to building and civil infrastructure systems. In this paper, the focus is placed on civil engineering applications only. The goal is to address the issues concurring to form the scientific paradigm. As a resut, possible future directions of research into this field are identified.

Collapse risk evaluation method on Bayesian network prediction model and engineering application

  • WANG, Jing;LI, Shucai;LI, Liping;SHI, Shaoshuai;XU, Zhenhao;LIN, Peng
    • Advances in Computational Design
    • /
    • 제2권2호
    • /
    • pp.121-131
    • /
    • 2017
  • Collapse was one of the typical common geological hazards during the construction of tunnels. The risk assessment of collapse was an effective way to ensure the safety of tunnels. We established a prediction model of collapse based on Bayesian Network. 76 large or medium collapses in China were analyzed. The variable set and range of the model were determined according to the statistics. A collapse prediction software was developed and its veracity was also evaluated. At last the software was used to predict tunnel collapses. It effectively evaded the disaster. Establishing the platform can be subsequent perfect. The platform can also be applied to the risk assessment of other tunnel engineering.

Deep learning-based recovery method for missing structural temperature data using LSTM network

  • Liu, Hao;Ding, You-Liang;Zhao, Han-Wei;Wang, Man-Ya;Geng, Fang-Fang
    • Structural Monitoring and Maintenance
    • /
    • 제7권2호
    • /
    • pp.109-124
    • /
    • 2020
  • Benefiting from the massive monitoring data collected by the Structural health monitoring (SHM) system, scholars can grasp the complex environmental effects and structural state during structure operation. However, the monitoring data is often missing due to sensor faults and other reasons. It is necessary to study the recovery method of missing monitoring data. Taking the structural temperature monitoring data of Nanjing Dashengguan Yangtze River Bridge as an example, the long short-term memory (LSTM) network-based recovery method for missing structural temperature data is proposed in this paper. Firstly, the prediction results of temperature data using LSTM network, support vector machine (SVM), and wavelet neural network (WNN) are compared to verify the accuracy advantage of LSTM network in predicting time series data (such as structural temperature). Secondly, the application of LSTM network in the recovery of missing structural temperature data is discussed in detail. The results show that: the LSTM network can effectively recover the missing structural temperature data; incorporating more intact sensor data as input will further improve the recovery effect of missing data; selecting the sensor data which has a higher correlation coefficient with the data we want to recover as the input can achieve higher accuracy.

항공기 엔진 구성품 내부 구조 설계에 대한 구조 안전성 평가 (Evaluation of Structural Integrity about Structural Design for Internal Components of Aircraft Engine)

  • 박현범
    • 항공우주시스템공학회지
    • /
    • 제17권5호
    • /
    • pp.58-62
    • /
    • 2023
  • 본 연구에서 항공기 엔진 내부 구성품의 구조 설계 결과에 대한 구조 안전성 평가 연구를 수행하였다. 엔진 내부 구성품에 라디에이터와 인터쿨러가 장착된다. 따라서 비행중에 라디에이터와 인터쿨러의 안전성을 검토하였다. 구조 해석을 통해 구조 안전성을 평가하였다. 구조 해석 기법은 유한 요소 해석 기법을 활용하였다. 구조 설계 및 해석을 위하여 가속도 하중을 고려하였다. 구조 안전성 평가 결과 구조 설계 결과는 타당한 것으로 확인되었다.

구조해석에서 객체지향 방법론의 도입 (Application of Object-Oriented Methodology for Structural Analysis and Design)

  • 이주영;김홍국;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.160-169
    • /
    • 1995
  • This study presents an application of object-oriented methodology for structural dcsign process. A prototype system of integrated a structural design system is developed by introducing a structural analysis object model(SAOM) and structural design object model(SDOM). The SAOM module. which is modeled as a part of structural member, performs structural analysis using FEM approach and the SDOM module checks structural members based on Korea steel design standard. Above mentionedmodelsareabstraclencapsulatibleandreusable.

  • PDF

Structural Design of Mid-Story Isolated High-Rise Building - Roppongi Grand Tower

  • Nakamizo, Daiki;Koitabashi, Yuichi
    • 국제초고층학회논문집
    • /
    • 제7권3호
    • /
    • pp.233-242
    • /
    • 2018
  • Since the response reduction effect on over 200-meter-tall resulting from the seismic isolation system is smaller in general than low-rise and mid-rise buildings, mid-story isolated buildings are considered to reduce the response in the upper part above the isolation story, however, in many cases, the acceleration response just below the isolation story is likely to be the largest. This paper presents the structural design schemes, the design of the main structural frames, and the constructions of a 230-meter-tall super high-rise building with mid-story isolation mechanism integrated in Roppongi, Tokyo. Moreover, this paper shows how the architectural and structural design for integrating a mid-story isolation system in a super high-rise building has been conducted and what solutions have been derived in this project. The realization of this building indicates new possibilities for mid-story isolation design for super high-rise buildings.

Modal transformation tools in structural dynamics and wind engineering

  • Solari, Giovanni;Carassale, Luigi
    • Wind and Structures
    • /
    • 제3권4호
    • /
    • pp.221-241
    • /
    • 2000
  • Structural dynamics usually applies modal transformation rules aimed at de-coupling and/or minimizing the equations of motion. Proper orthogonal decomposition provides mathematical and conceptual tools to define suitable transformed spaces where a multi-variate and/or multi-dimensional random process is represented as a linear combination of one-variate and one-dimensional uncorrelated processes. Double modal transformation is the joint application of modal analysis and proper orthogonal decomposition applied to the loading process. By adopting this method the structural response is expressed as a double series expansion in which structural and loading mode contributions are superimposed. The simultaneous use of the structural modal truncation, the loading modal truncation and the cross-modal orthogonality property leads to efficient solutions that take into account only a few structural and loading modes. In addition the physical mechanisms of the dynamic response are clarified and interpreted.