• Title/Summary/Keyword: structural design and construction

Search Result 1,978, Processing Time 0.03 seconds

Development of Automation Technology for Structural Members Quantity Calculation through 2D Drawing Recognition (2D 도면 인식을 통한 부재 물량 산출 자동화 기술 개발)

  • Sunwoo, Hyo-Bin;Choi, Go-Hoon;Heo, Seok-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.227-228
    • /
    • 2022
  • In order to achieve the goal of cost management, which is one of the three major management goals of building production, this paper introduces an approximate cost estimating automation technology in the design stage as the importance of predicting construction costs increases. BIM is used for accurate estimating, and the quantity of structural members and finishing materials is calculated by creating a 3D model of the actual building. However, only 2D basic design drawings are provided when making an estimating. Therefore, for accurate quantity calculation, digitization of 2D drawings is required. Therefore, this research calculates the quantity of concrete structural members by calculating the area for the recognition area through 2D drawing recognition technology incorporating computer vision. It is judged that the development technology of this research can be used as an important decision-making tool when predicting the construction cost in the design stage. In addition, it is expected that 3D modeling automation and 3D structural analysis will be possible through the digitization of 2D drawings.

  • PDF

A Study on applied possibility of Organic Form In Architectural space-Design (공간구성에 있어서 유기적 형태의 응용 가능성에 관한 연구)

  • 김성혜
    • Korean Institute of Interior Design Journal
    • /
    • no.14
    • /
    • pp.10-18
    • /
    • 1998
  • This study aims to make clear visual quality of organic form and structural order that is immanent in nature about a form as formative principles of architectural space design the significanced of this study is to prove the application possibility in to functional form architectural space design. All organic forms in nature has a unique shape and pattern in structure to be self-controled and good in order. Such an order in nature comes from regular construction and ratio principles which has aesthetical order by mathmetics. The specialty of beauty in nature can be revealed not only visual form but also the ratio balance and rhythm of structural principles. As we examine the aesthetic source embodied some object can be developed in to basic principles. Furthermore through this study we can find out that the form construction theory in nature forms share the quality attribute with geometrical form to be shown in architectural space design. Natural forms are ultimate visual expression of power that effects on the architectural space design. The rule of power in nature as nature formal characteristics have a direct influence and can be also applied to architectural construction. Therefore I expect that this study will be linked and continued to another structural view.

  • PDF

Development of Optimization Design Programs for Composite Beams (합성보의 최적설계 프로그램 개발)

  • 구민세;김긍환;유영찬
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.91-94
    • /
    • 1990
  • The object of this study is to develop computer programs with which ordinary engineers can analyse or design steel-concrete composite teams using optimization technique. Various design ana construction techniques which could maximize load carrying capacities and control concrete tension cracks effectively are studied and included in the programs. Analysis results show that proposed construction techniques can reduce steel weight by about 10%∼20% compared with ordinary composite beam. Concrete tensile stresses can also be controlled affectively by the suggested techniques.

  • PDF

The Use of Bituminous Subballast on Future High-Speed Lines in Spain: Structural Design and Economical Impact

  • Teixeira, P.F.;Ferreira, P.A.;Pita, A. Lopez;Casas, C.;Bachiller, A.
    • International Journal of Railway
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • The development of structural solutions for high-speed or very high-speed tracks that minimize total life cycle costs of the system is a key issue to improve the operational profitability of new investments. In opposition to conventional ballasted tracks, slab track solutions can be a cost-effective solution, but only in the cases where the benefits due to the increase in track availability and the reduction of track maintenance offsets its much higher construction costs. In the cases where such investment is not feasible, it is worth to evaluate possible structural improvements to ballasted track that allow reducing its maintenance needs without increasing too much its construction costs. This paper evaluates the design requirements and the impact of improving conventional high-speed ballasted tracks by using a bituminous subballast layer. It is divided into two main parts: first the design requirements of the structural solutions with bituminous subballast and its possible benefits on high-speed track deterioration, and secondly the evaluation of the economic impact, in terms of construction costs, of using this structural solution material in future Spanish high-speed lines.

  • PDF

The Cross Section Optimization of P.C Box-Girder Bridge Constructed by Free Cantilever Method (FCM 으로 가설되는 P.C 박스거더교의 횡단면 최적설계)

  • 방명석;김일곤;조현준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.56-60
    • /
    • 1991
  • Free Cantilever Method(FCM) is one of the most effective construction methods when precast prestressed concrete box girders are erected in the construction site. The special feature of FCM is that precast segments are erected in cantilever on the pier and connected in the middle of span to form the complete superstructure. Therefore each structural subsystem will be shown in each construction step and it should be analyzed for design whenever the segment is erected. In this study, the computer program was developed to optimally design the P.C box girder bridge considering tile construction sequence and verified by comparing the calculated results with the data of existing P.C box girder bridges. the sensitivity analysis was performed to show the efficiency of the developed program.

  • PDF

A study for the structural design of floating airports on sea (부유식 해상공항의 구조설계에 관한 연구)

  • Seong-Whan Park;Tae-Young Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.2
    • /
    • pp.19-25
    • /
    • 2001
  • Structural design requirements for very large floating structures(VLFS) are different corresponding to this purpose and structural type. In this study, the structural design procedure of VLFS is described, composing of the following processes : construction of design conditions. choice of structural types and main materials, estimation of structural design loads, determination of structural arrangements, and scantling of structural members. As an example of practical application, the initial structural design of floating airport and container terminal for Pusan is demonstrated.

  • PDF

Analysis of the Effect of Seismic Loads on Residential RC Buildings using the Change in Building Size and Return Period (건물 규모 및 재현주기 변화에 따른 주거용 RC건물에 대한 시공 중 지진하중의 영향 분석)

  • Seong-Hyeon Choi;Jae-Yo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Unlike a completed building, a building under construction may be at risk in terms of safety if a load exceeds the value considered in the design stage owing to various factors, such as a load action different from that in the design stage and insufficient concrete strength. In addition, if an earthquake occurs in a building under construction, greater damage may occur. Therefore, this study studied example models with various sizes of 5, 15, 25, and 60 floors for typical building types and analyzed the effects of seismic load on buildings under construction using construction-stage models according to frame completeness. Because the construction period of the building is much shorter than the period of use after completion, applying same earthquake loads as the design stage to buildings under construction may be excessive. Therefore, earthquakes with a return period of 50 to 2,400 years were applied to the construction stage model to review the seismic loads and analyze the structural performances of the members. Thus, we reviewed whether a load exceeding that of the design stage was applied and the return period level of the earthquake that could ensure structural safety. In addition, assuming the construction period of each example model, the earthquake return period according to the construction period was selected, and the design appropriateness with the selected return period was checked.

A Development of Interface Module between Structural Design and Detail Design based on BIM (BIM 기반의 구조설계와 상세설계의 인터페이스 모듈 개발)

  • Eom, Jin-Up;Shin, Tae-Song
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.113-124
    • /
    • 2011
  • This study concerned the interoperability between the structural-analysis model and the default detail model in steel structures available for the structural-design process based on BIM. The purpose of the study was to develop an interface module that can perform data conversion between the analysis and design applications and the BIM applications, through the dotnet frame work development environment using OpenAPI provided by the BIM application vendor. The direct-link method was applied for BIM interoperability. A basic-frame model for detail design and modeling was created from the structural-analysis model to verify if the application was developed. Finally, the proposed process was compared with the existing process to verify the efficiency of the former.

The Development of Automated Building Equipment Design Process System Using 3D CAD (3차원 CAD정보를 활용한 건축설비설계 프로세스 시스템 개발방향)

  • Lee, Dong-Hyun;Jung, Woo-Shin;Kim, Young-Don;Song, Kyoo-Dong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.269-274
    • /
    • 2008
  • It is attempted that the standardization of the construction, globalization of the engineering construction and an information oriented construction spread by setting a goal of the advanced construction industry and productivity increase of human resources within the country. Hence, it has been brought in the information oriented construction of BIM based technology for the field of construction and equipment of Korea. The current study that examines the possibility of application of 3D ; that is BIM based programs of building equipment, and make better the problems of 3D building equipment system through the Pilot Test, indicates the way of growth development about the construction of building equipment process system.

  • PDF

Application of Digital Mock-Up Technology for Detail Design and Construction of Bridge (교량 상세 설계 및 시공을 위한 DMU 기술 적응 방안 연구)

  • Lee, Yoon-Bum;Kim, Min-Seok;Lee, Kwang-Myong;Shin, Hyun-Yang;Park, Kyoung-Lae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.277-282
    • /
    • 2007
  • In recent years, dramatic advances in information technology have motivated the construction industry to improve its productivity. Most construction companies are trying to utilize some new information technologies for enhancing the structure quality, shortening construction time, and reducing the construction cost. Digital Mock-Up (DMU) technology utilizes 3D CAD/CAM system that shows the shape of a structure on the computer screen. By modeling and assembling the structure in 3D dimensional environments, some errors in design can be found before or during construction. In this paper, DMU technology was applied to the detail design and construction of In-Cheon Bridge and its effectiveness was evaluated. All components of a PSC box girder segment were modeled and assembled by using of 3D CAD tools and then, some interferences between components and errors were found and revised appropriately before construction. Consequently, DMU technology would improve the quality of the structure and reduce time and cost for construction.

  • PDF