• Title/Summary/Keyword: structural design and analysis

Search Result 6,762, Processing Time 0.036 seconds

A Study on the Structural Design and Analysis of Air Intake of Unmanned Aerial Vehicles Applied to Composite Materials (무인 항공기 공기 흡입구의 복합재 적용 구조 설계 및 해석 연구)

  • Choi, Heeju;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.81-85
    • /
    • 2022
  • In this study, we conducted a structural design and analysis of air intake of aircraft engine using composite materials. First, an investigation on structural design requirement of target structure was carried out. The distributed pressure load and acceleration condition was applied to structural design. To evaluate the structural design result, finite element analysis was carried out. The stress, deflection and buckling analysis for structural safety evaluation was performed. Finally, it was confirmed that the air intake through structural analysis is safety.

A Structural Analysis on the Leaflet Motion Induced by the Blood Flow for Design of a Bileaflet Mechanical Heart Valve Prosthesis

  • Kwon, Young-Joo;Kim, Chang-Nyung;Lee, Jae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1316-1323
    • /
    • 2003
  • This paper presents a structural analysis on the rigid and deformed motion of the leaflet induced by the blood flow required in the design of a bileaflet mechanical heart valve (MHV) prosthesis. In the study on the design and the mechanical characteristics of a bileaflet mechanical heart valve, the fluid mechanics analysis on the blood flow passing through leaflets, the kinetodynamics analysis on the rigid body motion of the leaflet induced by the pulsatile blood flow, and the structural mechanics analysis on the deformed motion of the leaflet are required sequentially and simultaneously. Fluid forces computed in the previous hemodynamics analysis on the blood flow are used in the kinetodynamics analysis on the rigid body motion of the leaflet. Thereafter, the structural mechanics analysis on the deformed motion of the leaflet follows to predict the structural strength variation of the leaflet as the leaflet thickness changes. Analysis results show that structural deformations and stresses increase as the fluid pressure increases and the leaflet thickness decreases. Analysis results also show that the leaflet becomes structurally weaker and weaker as the leaflet thickness becomes smaller than 0.6 mm.

Structural Design and Analysis of Connecting Part for Vertical Wind Turbine System Blade

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.44-49
    • /
    • 2020
  • This work is intended to develop a flapping-type vertical wind turbine system that will be applicable to diesel generators and wind turbine generator hybrid systems. In the aerodynamic design of the wind turbine blade, parametric studies were performed to determine an optimum aerodynamic configuration. After the aerodynamic design, the structural design of the blade was performed. The major structural components of the flapping-type wind turbine are the flapping blade, the connecting part, and the stopper. The primary focus of this work is the design and analysis of the connecting part. Structural tests were performed to evaluate the blade design, and the test results were compared with the results of the analysis.

Optimal design of reinforced concrete plane frames using artificial neural networks

  • Kao, Chin-Sheng;Yeh, I-Cheng
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.445-462
    • /
    • 2014
  • To solve structural optimization problems, it is necessary to integrate a structural analysis package and an optimization package. There have been many packages that can be employed to analyze reinforced concrete plane frames. However, because most structural analysis packages suffer from closeness of systems, it is very difficult to integrate them with optimization packages. To overcome the difficulty, we proposed a possible alternative, DAMDO, which integrates Design, Analysis, Modeling, Definition, and Optimization phases into an integration environment as follows. (1) Design: first generate many possible structural design alternatives. Each design alternative consists of many design variables X. (2) Analysis: employ the structural analysis software to analyze all structural design alternatives to obtain their internal forces and displacements. They are the response variables Y. (3) Modeling: employ artificial neural networks to build the models Y=f(X) to obtain the relationship functions between the design variables X and the response variables Y. (4) Definition: employ the design variables X and the response variables Y to define the objective function and constraint functions. (5) Optimization: employ the optimization software to solve the optimization problem consisting of the objective function and the constraint functions to produce the optimum design variables. The RC frame optimization problem was examined to evaluate the DAMDO approach, and the empirical results showed that it can be solved by the approach.

A Study on Conceptual Structural Design of Wing for a Small Scale WIG Craft Using Carbon/Epoxy and Foam Sandwich Composite Structure

  • Kong, Chang-Duk;Park, Hyun-Bum;Kang, Kuk-Gin
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.343-358
    • /
    • 2008
  • This present study provides the structural design and analysis of main wing, horizontal tail and control surface of a small scale WIG (Wing-in-Ground Effect) craft which has been developed as a future high speed maritime transportation system of Korea. Weight saving as well as structural stability could be achieved by using the skin.spar.foam sandwich and carbon/epoxy composite material. Through sequential design modifications and numerical structural analysis using commercial FEM code PATRAN/NASTRAN, the final design structural features to meet the final design goal such as the system target weight, structural safety and stability were obtained. In addition, joint structures such as insert bolts for joining the wing with the fuselage and lugs for joining the control surface to the wing were designed by considering easy assembling as well as more than 20 years service life.

Study on Structural Design and Analysis of Fuel System for Aircraft Auxiliary Fuel Tank (항공기 보조연료탱크 연료시스템 구조 설계 및 해석)

  • Choi, Won;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.60-65
    • /
    • 2019
  • This study did a structural design of a fuel system of auxiliary fuel tank applied to aircraft then analyzed it. The safety of the structural design result was investigated. Aluminum alloy metal structure was applied to the fuel system structure. The structural analysis was conducted using commercial finite element software. The design requirement was maximum accelerate condition of the structure. Therefore, structural design was done considering the maximum accelerate condition.

Development of Drift Design Method Considering Characteristics of Member Forces (부재력 특성을 고려한 변위조절설계법 개발)

  • 서지현;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.123-129
    • /
    • 2003
  • Drift design using resizing techniques can be a very practical method in drift design of high-rise buildings since it cannot require sensitivity analysis and structural re-analysis. Resizing techniques has used the cross sectional areas as design variable and supposed that displacement participation factors are inversely proportional to structural weights. Efficiency of resizing techniques based on displacement participation factors may depend on proper selection of sectional properties as design variables. In this study, two different drift design methods with the different sectional properties as design variables are presented and applied to a 20-story structure.

  • PDF

Toward a System of Integrating Structural Analysis and Design Procedures (구조해석과 설계과정의 통합시스템에 관하여)

  • 이주성;오석진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.120-127
    • /
    • 1993
  • This paper is concerned with the integrated computer program system aiming at efficiently performing the structural analysis and design. The developed computer program system is introduced and applied to a simple two-dimensional structure to show the general concept of the integrated system. Some design modifications and re-analyses are illustrated including local mesh refinement, These show the efficiency in doing design modification and analysis.

  • PDF

Design Improvement of Front-End Loader for Tractor to Reduce Stress Concentration and Evaluation of Impact Safety (응력집중 저감을 위한 트랙터용 프론트 로더의 설계개선 및 충격 안전성 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.109-119
    • /
    • 2018
  • The purpose of this study is to evaluate the structural safety of the front-end loader for the 90 kW class of agricultural tractors in impact test conditions. Deformation and stress on the loader under the impact test conditions are analyzed using the commercial finite element analysis software ANSYS. In previous research dealing with the initial design of the loader, the maximum stress occurred in the mount and exceeded the yield strength of the material. In this paper, an improved design of the mount of the loader was proposed to reduce the stress concentration in the initial design. The safety of the improved design was verified by performing rigid-body dynamics analysis, transient structural analysis, and static structural analysis under three impact test conditions: a drop and catch test, a corner pull test, a corner push test. It was found that the local stress concentration in the mount that appeared in the initial design was greatly reduced in the improved design, and that the maximum stresses occurred in the three impact test conditions are smaller than the yield strength. It is expected that the design improvement of the mount proposed in this study and the method of analysis may be effectively used to enhance structural safety in the development of new model front loaders in the future.

Evaluation on Structural Safety for Carbon-Epoxy Composite Wing and Tail Planes of the 1.2 Ton Class WIG

  • Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In the present study, structural safety and stability on the main wing and tail planes of the 1.2 ton WIG(Wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The carbon-epoxy composite material was used in design of wing structure. The skin-spar with skin-stressed structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, the design load was estimated with maximum flight load. From static strength analysis results using finite element method of the commercial codes. From the stress analysis results of the main wing, it was confirmed that the upper skin structure between the second rib and the third rib was unstable for the buckling load. Therefore in order to solve this problem, three stiffeners at the buckled region were added. After design modification, even though the weight of the wing was a little bit heavier than the target weight, the structural safety and stability was satisfied for design requirements.