• Title/Summary/Keyword: structural control

Search Result 4,118, Processing Time 0.032 seconds

Safety Assessment and Behavior Control System using Monitoring of Segmental PSC Box Girder Bridges during Construction (세그멘탈 PSC박스거더교량의 시공간 계측모니터링을 통한 확률적 구조안정성 평가 및 제어 시스템)

  • Shin, Jae-Chul;Cho, Hyo-Nam;Park, Kyung-Hoon;Bae, Yong-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.191-201
    • /
    • 2001
  • In spite of the increasing construction of segmental PSC box girder bridges, the techniques associated with real-time monitoring, construction control and safety assessment during construction have been less developed compared with the construction techniques. Thus, the development of an integrated system including real-time measurement and monitoring, control and safety assessment system during construction is necessary fur more safe and precise construction of the bridges. This study presents a prototype integrated monitoring system for preventing abnormal behavior and accidents under construction stages, that consist of behavior control system for precise construction, reliability-based safety assessment system, and structural analysis. Also, a prototype software system is developed on the basis of the proposed model. It is successfully applied to the Sea-Hae Grand Bridge built by FCM. The integrated system model and software system can be utilized for the safe and precise construction of segmental PSC bridges during construction.

  • PDF

A novel hybrid control of M-TMD energy configuration for composite buildings

  • ZY Chen;Yahui Meng;Ruei-Yuan Wang;T. Chen
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.475-483
    • /
    • 2023
  • In this paper, a new energy-efficient semi-active hybrid bulk damper is developed that is cost-effective for use in structural applications. In this work, the possibility of active and semi-active component configurations combined with suitable control algorithms, especially vibration control methods, is explored. The equations of motion for a container bridge equipped with an MDOF Mass Tuned Damper (M-TMD) system are established, and the combination of excitation, adhesion, and control effects are performed by a proprietary package and commercial custom submodel software. Systematic methods for the synthesis of structural components and active systems have been used in many applications because of the main interest in designing efficient devices and high-performance structural systems. A rational strategy can be established by properly controlling the master injection frequency parameter. Simulation results show that the multiscale model approach is achieved and meets accuracy with high computational efficiency. The M-TMD system can significantly improve the overall response of constrained structures by modestly reducing the critical stress amplitude of the frame. This design can be believed to build affordable, safe, environmentally friendly, resilient, sustainable infrastructure and transportation.

Grey algorithmic control and identification for dynamic coupling composite structures

  • ZY Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.407-417
    • /
    • 2023
  • After a disaster like the catastrophic earthquake, the government have to use rapid assessment of the condition (or damage) of bridges, buildings and other infrastructures is mandatory for rapid feedbacks, rescue and post-event management. Many domain schemes based on the measured vibration computations, including least squares estimation and neural fuzzy logic control, have been studied and found to be effective for online/offline monitoring of structural damage. Traditional strategies require all external stimulus data (input data) which have been measured available, but this may not be the generalized for all structures. In this article, a new method with unknown inputs (excitations) is provided to identify structural matrix such as stiffness, mass, damping and other nonlinear parts, unknown disturbances for example. An analytical solution is thus constructed and presented because the solution in the existing literature has not been available. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results of linear and nonlinear structures show that the proposed method is able to identify structural parameters and their changes due to damage and unknown excitations. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and control theory.

Structural Design of Vibration Controlled Tall Building with Overhang Structure

  • Ishibashi, Yoji;Yoshizawa, Katsuhito;Ogawa, Ichiro;Tamari, Masatoshi;Nagayama, Kenji;Oki, Hatsuka
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.3
    • /
    • pp.177-183
    • /
    • 2019
  • This paper describes the structural design of a 212 m tall building currently under construction in the Tokiwabashi District Redevelopment Project facing Tokyo Station. In this project there was a requirement to rationally solve many issues arising from the conditions of the redevelopment project. In particular, the following two points were considered to be important from the point of view of structural design. 1) To provide an overhang frame with the perimeter columns on the lower stories inclined, in order to enable a typical floor area that greatly exceeded the limitations of the underground structure shape. 2) To provide high grade seismic performance for the office buildings to be constructed on prime city center land. LSCVCS (Lower Stories Concentrated Vibration Control System) was proposed as the method of rationally designing the overhang frame, which is an extremely disadvantageous element in the structural scheme of the tall building with a large slenderness ratio. LSCVCS is a system to provide effective damping by arranging vibration control devices in a concentrated manner in a lower story with large story height, that produces large deformation in an earthquake. Also, the vibration control devices arranged in the lower story are limited to viscous devices, to take into consideration the residual deformation of the overhang frame after an earthquake. The results of investigations into the specific effects of the system for the seismic design are reported, including Performance-based seismic design.

Aerodynamic and Structural Design on Small Wind Turbine Blade Using High Performance Configuration and E-Glass/Epoxy-Urethane Foam Sandwich Composite Structure

  • Kong, Changduk;Bang, Johyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.401-407
    • /
    • 2004
  • This study proposes a interim development result for the l-㎾ class small wind turbine system, which is applicable to relatively low wind speed regions like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Moreover both structural safety and stability were verified through the full-scale structural test.

  • PDF

Structural novelty detection based on sparse autoencoders and control charts

  • Finotti, Rafaelle P.;Gentile, Carmelo;Barbosa, Flavio;Cury, Alexandre
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.647-664
    • /
    • 2022
  • The powerful data mapping capability of computational deep learning methods has been recently explored in academic works to develop strategies for structural health monitoring through appropriate characterization of dynamic responses. In many cases, these studies concern laboratory prototypes and finite element models to validate the proposed methodologies. Therefore, the present work aims to investigate the capability of a deep learning algorithm called Sparse Autoencoder (SAE) specifically focused on detecting structural alterations in real-case studies. The idea is to characterize the dynamic responses via SAE models and, subsequently, to detect the onset of abnormal behavior through the Shewhart T control chart, calculated with SAE extracted features. The anomaly detection approach is exemplified using data from the Z24 bridge, a classical benchmark, and data from the continuous monitoring of the San Vittore bell-tower, Italy. In both cases, the influence of temperature is also evaluated. The proposed approach achieved good performance, detecting structural changes even under temperature variations.

Intelligent hybrid controlled structures with soil-structure interaction

  • Zhang, X.Z.;Cheng, F.Y.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.573-591
    • /
    • 2004
  • A hybrid control system is presented for seismic-resistant building structures with and without soil-structure interaction (SSI). The hybrid control is a damper-actuator-bracing control system composed of passive and active controllers. An intelligent algorithm is developed for the hybrid system, in which the passive damper is designed for minor and moderate earthquakes and the active control is designed to activate when the structural response is greater than a given threshold quantity. Thus, the external energy for active controller can be optimally utilized. In the control of a multistory building, the controller placement is determined by evaluating the optimal location index (OLI) calculated from six earthquake sources. In the study, the soil-structure interaction is considered both in frequency domain and time domain analyses. It is found that the interaction can significantly affect the control effectiveness. In the hybrid control algorithm with intelligent strategy, the working stages of passive and active controllers can be different for a building with and without considering SSI. Thus SSI is essential to be included in predicting the response history of a controlled structure.

Semi-active leverage-type isolation system considering minimum structural energy

  • Lin, Tzu-Kang;Lu, Lyan-Ywan;Chen, Chi-Jen
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.373-387
    • /
    • 2018
  • Semi-active isolation systems based on leverage-type stiffness control strategies have been widely studied. The main concept behind this type of system is to adjust the stiffness in the isolator to match the fundamental period of the isolated system by using a simple leverage mechanism. Although this system achieves high performance under far-field earthquakes, it is unsuitable for near-fault strong ground motion. To overcome this problem, this study considers the potential energy effect in the control law of the semi-active isolation system. The minimal energy weighting (MEW) between the potential energy and kinetic energy was first optimized through a series of numerical simulations. Two MEW algorithms, namely generic and near-fault MEW control, were then developed to efficiently reduce the structural displacement responses. To demonstrate the performance of the proposed method, a two-degree-of-freedom structure was employed as a benchmark. Numerical results indicate that the dynamic response of the structure can be effectively dampened by the proposed MEW control under both far-field and near-fault earthquakes, whereas the structural responses resulting from conventional control methods may be greater than those for the purely passive control method. Moreover, according to experimental verifications, both the generic and near-fault MEW control modes yielded promising results under impulse-like earthquakes. The practicability of the proposed control algorithm was verified.

Active mass damper control for cable stayed bridge under construction: an experimental study

  • Chen, Hao;Sun, Zhi;Sun, Limin
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.141-156
    • /
    • 2011
  • A cable stayed bridge under construction has low structural damping and is not as stable as the completed bridge. Control countermeasures, such as the installation of energy dissipating devices, are thus required. In this study, the general procedure and key issues on adopting an active control device, the active mass damper (AMD), for vibration control of cable stayed bridges under construction were studied. Taking a typical cable stayed bridge as the prototype structure; a lab-scale test structure was designed and fabricated firstly. A baseline FEM model was then setup and updated according to the modal parameters measured from vibration test on the structure. A numerical study to simulate the bridge-AMD control system was conducted and an efficient LQG-based controller was designed. Based on that, an experimental implementation of AMD control of the transverse vibration of the bridge model was performed. The results from numerical simulation and experimental study verified that the AMD-based active control was feasible and efficient for reducing dynamic responses of a complex structural system. Moreover, the discussion made in this study clarified some critical problems which should be addressed for the practical implementation of AMD control on real cable-stayed bridges.

An Experimental Study on the Structural Vibration Control Using Semi-Active Orificed Fluid Dampers (반능동형 오리피스 유체댐퍼를 이용한 구조물 진동제어에 관한 실험적 연구)

  • 문석준;김병현;정종안
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.55-62
    • /
    • 2004
  • In general, control performance of the active control system is superior to that of the passive control devices. However, the active system require a large amount of external energy to operate the actuators. Semi-active control systems maintain the reliability of the passive control systems while taking advantage of the adjustability of the active control system. In this research, a semi-active orificed fluid damper having the capacity of about 2 tons was designed and fabricated. It is a two-stage damper with normally open solenoid valve. A series of tests was performed to grasp its performance characteristics. It was also applied to a 6-story steel structure subjected to random and seismic excitations for the confirmation of its validity on structural vibration absorption.