• 제목/요약/키워드: structural condition assessment

검색결과 261건 처리시간 0.027초

Strain-based structural condition assessment of an instrumented arch bridge using FBG monitoring data

  • Ye, X.W.;Yi, Ting-Hua;Su, Y.H.;Liu, T.;Chen, B.
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.139-150
    • /
    • 2017
  • The structural strain plays a significant role in structural condition assessment of in-service bridges in terms of structural bearing capacity, structural reliability level and entire safety redundancy. Therefore, it has been one of the most important parameters concerned by researchers and engineers engaged in structural health monitoring (SHM) practices. In this paper, an SHM system instrumented on the Jiubao Bridge located in Hangzhou, China is firstly introduced. This system involves nine subsystems and has been continuously operated for five years since 2012. As part of the SHM system, a total of 166 fiber Bragg grating (FBG) strain sensors are installed on the bridge to measure the dynamic strain responses of key structural components. Based on the strain monitoring data acquired in recent two years, the strain-based structural condition assessment of the Jiubao Bridge is carried out. The wavelet multi-resolution algorithm is applied to separate the temperature effect from the raw strain data. The obtained strain data under the normal traffic and wind condition and under the typhoon condition are examined for structural safety evaluation. The structural condition rating of the bridge in accordance with the AASHTO specification for condition evaluation and load and resistance factor rating of highway bridges is performed by use of the processed strain data in combination with finite element analysis. The analysis framework presented in this study can be used as a reference for facilitating the assessment, inspection and maintenance activities of in-service bridges instrumented with long-term SHM system.

Design Method of Steel Slit Shear Walls with Tapered Links for Structural Condition Assessment

  • He, Liusheng;Wu, Chen;Jiang, Huanjun
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.361-368
    • /
    • 2020
  • The authors developed a new type of steel slit shear wall (SSSW) having the function of structural condition assessment through visually inspecting the out-of-plane deformation of the designed tapered links subjected to lateral deformation. To facilitate its practical application, this paper studies how to design dimensions of the tapered links. Two parameters, the width-to-thickness ratio of the tapered links and steel yield stress, were studied. The performance of structural condition assessment was affected by both parameters with the width-to-thickness ratio being the controlling one. Through both numerical and experimental study, the designed width-to-thickness ratio of tapered links for different levels of structural condition assessment was established considering the effect of different steel grades used. In practice, the dimensions of tapered links can be determined following the design equation provided. Finally, a design procedure for the proposed SSSW system is provided.

시설물 상태평가를 위한 파운데이션 모델 기반 2-Step 시설물 손상 분석 (2-Step Structural Damage Analysis Based on Foundation Model for Structural Condition Assessment)

  • 박현수;김휘영;정동기
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.621-635
    • /
    • 2023
  • 시설물 상태평가는 시설물의 사용성을 평가하고, 진단 주기를 결정하는 중요한 과정이다. 현재 수행되고 있는 인력 기반 방법은 안전, 효율, 객관성에 대한 문제를 안고 있어 이를 개선하기 위해 영상을 이용한 딥러닝(deep learning) 기반의 연구가 수행되고 있다. 그러나 시설물 손상 데이터는 발견하기 어려워 다량의 시설물 손상 학습 데이터를 구축하기 어렵고, 이는 딥러닝 기반 상태평가에 한계로 작용한다. 본 연구에서는 영상 기반 시설물 상태평가의 학습 데이터 부족으로 인한 어려움을 개선하기 위해 파운데이션 모델(foundation model) 기반 2-step 시설물 손상 분석을 제시한다. 시설물 상태평가의 요소를 객체화와 정량화로 세분화하고, 정량화 단계에서 영상 분할(segmentation) 파운데이션 모델을 적용하였다. 본 연구의 방법은 기존 영상 분할 방법 대비 10% 포인트 이상 높은 mean intersection over union을 나타냈고, 특히 철근 노출의 경우에는 40% 포인트 이상의 성능 개선을 보였다. 본 연구의 방법이 학습 데이터 구축이 어려운 도메인에 성능 개선을 가져올 것이라 기대한다.

Performance-based remaining life assessment of reinforced concrete bridge girders

  • Anoop, M.B.;Rao, K. Balaji;Raghuprasad, B.K.
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.69-97
    • /
    • 2016
  • Performance-based remaining life assessment of reinforced concrete bridge girders, subject to chloride-induced corrosion of reinforcement, is addressed in this paper. Towards this, a methodology that takes into consideration the human judgmental aspects in expert decision making regarding condition state assessment is proposed. The condition of the bridge girder is specified by the assignment of a condition state from a set of predefined condition states, considering both serviceability- and ultimate- limit states, and, the performance of the bridge girder is described using performability measure. A non-homogeneous Markov chain is used for modelling the stochastic evolution of condition state of the bridge girder with time. The thinking process of the expert in condition state assessment is modelled within a probabilistic framework using Brunswikian theory and probabilistic mental models. The remaining life is determined as the time over which the performance of the girder is above the required performance level. The usefulness of the methodology is illustrated through the remaining life assessment of a reinforced concrete T-beam bridge girder.

Condition assessment of reinforced concrete bridges using structural health monitoring techniques - A case study

  • Mehrani, E.;Ayoub, A.;Ayoub, A.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.381-395
    • /
    • 2009
  • The paper presents a case study in which the structural condition assessment of the East Bay bridge in Gibsonton, Florida is evaluated with the help of remote health monitoring techniques. The bridge is a four-span, continuous, deck-type reinforced concrete structure supported on prestressed pile bents, and is instrumented with smart Fiber Optic Sensors. The sensors used for remote health monitoring are the newly emerged Fabry-Perot (FP), and are both surface-mounted and embedded in the deck. The sensing system can be accessed remotely through fast Digital Subscriber Lines (DSL), which permits the evaluation of the bridge behavior under live traffic loads. The bridge was open to traffic since March 2005, and the collected structural data have been continuously analyzed since. The data revealed an increase in strain readings, which suggests a progression in damage. Recent visual observations also indicated the presence of longitudinal cracks along the bridge length. After the formation of these cracks, the sensors readings were analyzed and used to extrapolate the values of the maximum stresses at the crack location. The data obtained were also compared to initial design values of the bridge under factored gravity and live loads. The study showed that the proposed structural health monitoring technique proved to provide an efficient mean for condition assessment of bridge structures providing it is implemented and analyzed with care.

Condition assessment of steel shear walls with tapered links under various loadings

  • He, Liusheng;Kurata, Masahiro;Nakashima, Masayoshi
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.767-788
    • /
    • 2015
  • A steel shear wall with double-tapered links and in-plane reference was developed for assisting the assessment of the structural condition of a building after an earthquake while maintaining the original role of the wall as a passive damper device. The double-tapered link subjected to in-plane shear deformation is designed to deform torsionally after the onset of local buckling and works as an indicator of the maximum shear deformation sustained by the shear wall during an earthquake. This paper first examines the effectiveness of double-tapered links in the assessment of the structural condition under various types of loading. A design procedure using a baseline incremental two-cycle loading protocol is verified numerically and experimentally. Meanwhile, in-plane reference links are introduced to double-tapered links and greatly enhance objectivity in the inspection of notable torsional deformation with the naked eye. Finally, a double-layer system, which consists of a layer with double-tapered links and a layer with rectangular links made of low-yield-point steel, is tested to demonstrate the feasibility of realizing both structural condition assessment and enhanced energy dissipation.

구조시스템의 퍼지신뢰성해석 및 상태평가모델 (Condition Assessment Models and Fuzzy Reliability Analysis of Structural Systems)

  • 이증빈;손용우;박주원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.61-68
    • /
    • 1998
  • It has become important to evaluate the qualitive reliability and condition assessment of existing structural systems in order to establish a rational program for repair and maintenance. Since most of if existing structural system may suffer from defect corrosion and damage, it is necessary to account for their effects in fuzzy reliability analysis, In this paper, an attempt is made to develope a reliability analysis for damaged structural systems using failure possibility theory. Damage state is specified in terms of linguistic valiables using natural language information and numerical information, which are defined by fuzzy sets. Using a subjective condition index of failure possibility and information of the damage state is introduced into the calculation of failure probability. The subjective condition index of quantitative and qualitative analysis method is newly proposed based on the fuzzy set operations, namely logical product, drastic product, logical sum and drastic sum

  • PDF

노출 환경에 따른 목조 고건축물 기둥의 열화 차이 (Difference of Deterioration According to Exposed Condition of Column in Wooden Traditional Building)

  • 김광철;배문성;이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권2호
    • /
    • pp.58-68
    • /
    • 2003
  • 목조 고건축물의 안전성 평가를 위해서는 먼저 부재의 성능평가가 선행되어야 한다. 지금까지의 목재 부재의 성능평가는 육안에 의한 경험적 방법에 의존하였다. 하지만 과학적이고 합리적인 비파괴 방법을 적용하여 구조부재의 성능을 평가할 수 있다면 구조물의 안전성 해석은 더욱 정확해지고 합리적이 될 것이다. 이를 위해 본 연구에서는 목조 고건축물의 여러 구조 부재 중 기둥에 대해 비파괴 평가법을 적용하여 구조부재의 성능 평가에 대한 가능성을 알아보았다. 이 결과를 이어지는 연구에서 구조물의 안전성 해석의 기초자료로 사용할 예정이다. 특별히 기둥의 노출 환경에 따른 열화의 진행정도를 비파괴 평가법으로 측정하였다. 그 결과 실제 육안에 의한 열화의 관찰과 유사한 결과를 나타내어 비파괴 방법의 적용 가능성을 보여주었다.

3차원 교량모델에서의 상태평가정보 가시화를 위한 요구사항 분석 (Requirement analysis for visualization of condition assessment in 3D Bridge Model)

  • 황명강;김봉근;이상호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2010년도 정기 학술대회
    • /
    • pp.238-241
    • /
    • 2010
  • This paper proposed an approach to integrate bridge condition assessment related information with a 3D bridge model to visualize bridge condition assessment information in the 3D bridge model. In this approach, bridge information model plays a centric role in the data access and realizes the integration of bridge initial design and historical bridge maintenance records. Behind the bridge information model is a rational database. After the system requirements for this approach, several IFC data model extensions are suggested.

  • PDF

Dynamic risk assessment of water inrush in tunnelling and software development

  • Li, L.P.;Lei, T.;Li, S.C.;Xu, Z.H.;Xue, Y.G.;Shi, S.S.
    • Geomechanics and Engineering
    • /
    • 제9권1호
    • /
    • pp.57-81
    • /
    • 2015
  • Water inrush and mud outburst always restricts the tunnel constructions in mountain area, which becomes a major geological barrier against the development of underground engineering. In view of the complex disaster-causing mechanism and difficult quantitative predictions of water inrush and mud outburst, several theoretical methods are adopted to realize dynamic assessment of water inrush in the progressive process of tunnel construction. Concerning both the geological condition and construction situation, eleven risk factors are quantitatively described and an assessment system is developed to evaluate the water inrush risk. In the static assessment, the weights of eight risk factors about the geological condition are determined using Analytic Hierarchy Process (AHP). Each factor is scored by experts and the synthesis scores are weighted. The risk level is ultimately determined based on the scoring outcome which is derived from the sum of products of weights and comprehensive scores. In the secondary assessment, the eight risk factors in static assessment and three factors about construction situation are quantitatively analyzed using fuzzy evaluation method. Subordinate levels and weight of factors are prepared and then used to calculate the comprehensive subordinate degree and risk level. In the dynamic assessment, the classical field of the eleven risk factors is normalized by using the extension evaluation method. From the input of the matter-element, weights of risk factors are determined and correlation analysis is carried out to determine the risk level. This system has been applied to the dynamic assessment of water inrush during construction of the Yuanliangshan tunnel of Yuhuai Railway. The assessment results are consistent with the actual excavation, which verifies the rationality and feasibility of the software. The developed system is believed capable to be back-up and applied for risk assessment of water inrush in the underground engineering construction.