• 제목/요약/키워드: structural characteristic

검색결과 1,395건 처리시간 0.03초

주탑형상 및 강성이 사장교의 거동 및 주형좌굴에 미치는 영향 (The Behavior Characteristic and Buckling Strength of Stiffening-Girder of Cable stayed bridge according to Pylon's shape and Flexure Stiffness)

  • 최학재;채규봉
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.759-763
    • /
    • 2006
  • Cable Stayed Bridge is mainly composed of three element. Composed element are cable. stiffening girder and Pylon. The characteristic of bridge's behavior depend on these three element's relative stiffness, shape and system of bridge. The purpose of this paper is to exame the characteristic of bridge's behavior and buckling strength of stiffening girder according to shape and flexure stiffness of pylon

  • PDF

An ESED method for investigating seismic behavior of single-layer spherical reticulated shells

  • Zhang, Ming;Zhou, Guangchun;Huang, Yanxia;Zhi, Xudong;Zhang, De-Yi
    • Earthquakes and Structures
    • /
    • 제13권5호
    • /
    • pp.455-464
    • /
    • 2017
  • This paper develops a new method for analyzing the structural seismic behavior of single-layer reticulated shells based on exponential strain energy density (ESED). The ESED method reveals a characteristic point from a relationship between ESED sum and peak seismic acceleration. Then, the characteristic point leads to an updated concept of structural failure and an ESED-based criterion for predicting structural failure load. Subsequently, the ESED-based criterion and the characteristic point are verified through numerical analysis of typical single-layer reticulated shells with different configurations and a shaking table test of the scale shell model. Finally, discussions further verify the rationality and application of the ESED-based criterion. The ESED method might open a new way of structural analysis and the ESED-based criterion might indicate a prospect for a unified criterion for predicting seismic failure loads of various structures.

유전알고리즘에 의한 강봉의 구조특성행렬 산출법 (Identification of Structural Characteristic Matrices of Steel Bar by Genetic Algorithm)

  • 박석주;제해광;이금주;박영범;박경일
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.946-952
    • /
    • 2010
  • A method for the identification of structural characteristic parameters of a steel bar in the matrices form such as stiffness matrices and mass matrices from frequency response function(FRF) by genetic algorithm is proposed. As the method is based on the finite element method(FEM), the obtained matrices have perfect physical meanings if the FRFs got from the analysis and the FRFs from the experiments were well coincident each other. The identified characteristic matrices from the FRFs with maximun 40 % of random errors by the genetic algorithm are coincident with the characteristic matrices from exact FEM FRFs well each other. The fitted element diameters by using only 2 points experimental FRFs are similar to the actual diameters of the bar. The fitted FRFs are good accordance with the experimental FRFs on the graphs. FRFs of the rest 9 points not used for calculating could be fitted even well.

콘크리트 베드를 이용한 무심연삭기의 구조특성 해석 (Structural Characteristic Analysis of a Centerless Grinding Machine with Concrete Bed)

  • 김석일;성하경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.32-36
    • /
    • 2002
  • This paper presents the structural characteristic analysis of a centerless grinding machine with concrete bed. The centerless grinding machine is composed of grinding wheel head, regulating wheel head, concrete bed, wheel dresser and so on. Especially, the concrete bed is introduced to improve the static, dynamic and thermal characteristics of the centerless grinding machine. The structural analysis model of centerless grinding machine is constructed by the finite element method, and the structural characteristics in the design stage are estimated based on the structural deformation and harmonic response under the various testing conditions related to gravity force and directional farces

  • PDF

초정밀 대면적 미세 형상 가공기의 구조 특성 해석 (Structural Characteristic Analysis of an Ultra-Precision Machine for Machining Large-Surface Micro-Features)

  • 김석일;이원재
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1173-1179
    • /
    • 2007
  • In recent years, research to machine large-surface micro-features has become important because of the light guide panel of a large-scale liquid crystal display and the bipolar plate of a high-capacity proton exchange membrane fuel cell. In this study, in order to realize the systematic design technology and performance improvements of an ultra-precision machine for machining the large-surface micro-features, a structural characteristic analysis was performed using its virtual prototype. The prototype consisted of gantry-type frame, hydrostatic feed mechanisms, linear motors, brushless DC servo motor, counterbalance mechanism, and so on. The loop stiffness was estimated from the relative displacement between the tool post and C-axis table, which was caused by a cutting force. Especially, the causes of structural stiffness deterioration were identified through the structural deformation analysis of sub-models.

철도차량 추진제어장치 성능시험을 위한 관성부하 시험설비의 구조안전성 및 동특성 평가 연구 (A Study on Structural Integrity and Dynamic Characteristic of Inertial Load Test Equipment for Performance Test of Railway Vehicle Propulsion Control System)

  • 장형진;신광복;이상훈;이대봉
    • 한국철도학회논문집
    • /
    • 제13권4호
    • /
    • pp.363-370
    • /
    • 2010
  • 본 논문은 철도차량용 추진제어장치의 성능평가를 위한 관성부하 시험설비의 구조안전성 및 동특성 평가를 연구하였다. 추진제어장치는 철도차량의 핵심 부품으로서 차량에 적용하기 전에 안정성 및 신뢰성 검증이 충분히 이루어 져야 한다. 따라서 추진제어장치의 성능시험을 위한 관성부하 시험설비를 이론식을 바탕으로 하여 설계하였다. 설계된 관성부하 시험설비에 대해 Ansys v11.0을 이용하여 구조해석을 수행하였으며, ADAMS를 통해 동특성을 평가하였다. 관성부하 시험설비의 구조안전성은 조합하중하의 베어링에서 안전계수가 10.2로 만족하였다. 또한, 동적 시뮬레이션에 따른 플라이휠은 0.83mm이내의 최대진폭변위로 구조적 안정성이 확보되었다.

연결특성함수를 이용한 문서화상에서의 영역 분리와 문자열 추출 (Segmentation of region strings using connection-characteristic function)

  • 김석태;이대원;박찬용;남궁재찬
    • 한국통신학회논문지
    • /
    • 제22권11호
    • /
    • pp.2531-2542
    • /
    • 1997
  • This paper describes a method for region segmentation and string extractionin documents which are mixed with text, graphic and picture images by the use of the structural characteristic of connceted components. In segmentation of non-text regionas, with connection-characteristic functions which are made by structural characteristic of connected components, segmentation process is progressed. In the string extraction, first we organize basic-unit-region of which vertical and horizontal length are 1/4 of average length of connection components. Second, by merging the basic-unit-regions one other that have smaller values than a given connection intensity threshold. Third, by linking the word blocks with similar block anagles, initial strings are cresed. Finally the whold strings are generated by merging remaining word blocks whose angles are not decided, if their height and prosition are similar to the initial strings. This method can extract strings that are neither horizontal nor of various character sizes. Through computer exteriments with different style documents, we have shown that the feasibility of our method successes.

  • PDF

페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석 (Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules)

  • 김석일;이원재;조순주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1008-1013
    • /
    • 2003
  • This paper concerns the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system consisted of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.

  • PDF

페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석 (Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules)

  • 김석일;박천홍;조순주
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.896-903
    • /
    • 2004
  • This paper proposes the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high-precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system composed of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.