• Title/Summary/Keyword: structural backfill material

Search Result 20, Processing Time 0.025 seconds

A Study on the Recycling of Coal Ash as Structural Backfill materials (구조물 뒷채움재로서의 석탄회 활용에 관한 연구)

  • 여유현
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.74-79
    • /
    • 2000
  • The purpose of this paper is to recycle coal ash as structural backfill materials from electric power plants. Two million tons of coal ash are produced annually. The laboratory test was executed for the basic compatibility as substitution for structural backfill materials and the optimal mixture ratio(fly ash : bottom ash) was decided. In addition the model test was performed using medium scale earth pressure model with small size earth pressure cells model box data logger and some other apparatuses. Mixed coal ash and excellent backfill materials(coheisonless soil SW) were compared in the view of lateral earth pressure variation depending on wall displacement. The reduction of earth pressure when coal ash was used as a bockfill material was monitored comparing to that of cohesionless soil. the cost and environmental pollutants by treating coal ash can be reduced through developing the recycling technology.

  • PDF

A Study on the Recycling of Coal Ash as Fill Materials (석탄회 자원의 채움재로서의 활용에 관한 연구)

  • 천병식;고용일;송경율;이준기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.513-520
    • /
    • 1999
  • 20 million tons of coal ash has been produced in Korea annually. This causes the environmental problems and the cost of land for ash pond. However the amount of coal ash for recycling is small because of the low level of recycling technology and the ignorance. As the coal ash has the significant engineering properties, it can be utilized as soft ground stabilizer, backfill materials and so forth. The purpose of this paper is to summarize some of the recycling methods of coal ash. One is structural backfill materials, the other is flowable fill. Optimal mixture ratio(fly ash : bottom ash) is determined for structural backfill materials and the model test is performed. The model test accompanied with physical tests were executed for identifying that the flowable fly ash can be used as fill materials such as trench back filling.

  • PDF

Assessment of effect of material properties on seismic response of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.601-619
    • /
    • 2017
  • Cantilever retaining wall movements generally depend on the intensity and duration of ground motion, the response of the soil underlying the wall, the response of the backfill, the structural rigidity, and soil-structure interaction (SSI). This paper investigates the effect of material properties on seismic response of backfill-cantilever retaining wall-soil/foundation interaction system considering SSI. The material properties varied include the modulus of elasticity, Poisson's ratio, and mass density of the wall material. A series of nonlinear time history analyses with variation of material properties of the cantilever retaining wall are carried out by using the suggested finite element model (FEM). The backfill and foundation soil are modelled as an elastoplastic medium obeying the Drucker-Prager yield criterion, and the backfill-wall interface behavior is taken into consideration by using interface elements between the wall and soil to allow for de-bonding. The viscous boundary model is used in three dimensions to consider radiational effect of the seismic waves through the soil medium. In the seismic analyses, North-South component of the ground motion recorded during August 17, 1999 Kocaeli Earthquake in Yarimca station is used. Dynamic equations of motions are solved by using Newmark's direct step-by-step integration method. The response quantities incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that while the modulus of elasticity has a considerable effect on seismic behavior of cantilever retaining wall, the Poisson's ratio and mass density of the wall material have negligible effects on seismic response.

Evaluation of the Applicability of CLSM by Numerical Method and Field Test (현장시험과 수치해석에 의한 관거 뒤채움용 CLSM 적용성 평가)

  • Nam, Joongwoo;Byun, Yoshep;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.5-12
    • /
    • 2013
  • The safety and structural integrity of buried pipes are usually at risk from constructing loading and compaction of backfill materials. The backfill material should be strong enough to help resistance and redistribute loads so that the buried pipe remains unaffected. Due to the many problems associated with buried pipes, there have been multiple studies on the development of a sustainable backfill material. In this study, a Controlled Low Strength Material made of coal ash was considered as a buried pipe backfill material. To determine the feasibility and performance of this backfill material, a numerical simulation was conducted with the results confirmed by a field test. Results showed maximum settlement to be 2 mm with the elastic strain of the buried pipe to be about 0.006.

A Case Study of Sediment Transport on Trenched Backfill Granular and Cohesive Material due to Wave and Current

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.86-98
    • /
    • 2016
  • In this study, after the installation of a subsea pipeline, backfilling was performed in the trenched area. During these operations, a stability problem in the subsea pipeline occurred. The pipeline was directly impacted by environmental loading such as waves and currents that were caused by backfill material when scouring or sediment transport and siltation was carried out. Therefore, this study reviewed whether trenching was necessary, and conducted research into an indigenous seabed property that contains granular soil. A study of cohesive soil was also conducted in order to cross-correlate after calculating the values of the critical Shields parameter relevant to elements of the external environment such as waves and current, and the shear Shields parameter that depends on the actual shearing stress. In case of 1), sedimentation or erosion does not occur. In the case of 2), partial sedimentation or erosion occurs. If the case is 3), full sedimentation or erosion occurs. Therefore, in the cases of 1) or 2), problems in structural subsea pipeline stability will not occur even if partial sedimentation or erosion occurs. This should be reflected particularly in cases with granular and cohesive soil when a reduction in shear strength occurs by cyclic currents and waves. In addition, since backfilling material does not affect the original seabed shear strength, a set-up factor should be considered to use a reduced of the shear strength in the original seabed.

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

A Study on the Ring Deflection According to Compaction of Buried Polyethylene Pipes (지중매설 폴리에틸렌관의 다짐도에 따른 관변형 연구)

  • Seungcheol Baek;Seungwook Kim;Byounghan Choi;Sunhee Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.10
    • /
    • pp.5-10
    • /
    • 2024
  • Flexible pipes have the property of resisting external loads by utilizing the rigidity of the pipe and the surrounding ground, and have recently been in the spotlight because they are lighter in weight and have excellent durability compared to concrete pipes. In this study, the behavior characteristics of buried polyethylene pipe, a representative flexible pipe, were examined. Double-walled and multi-walled polyethylene pipes were used, and the structural behavior of the polyethylene pipe was evaluated based on a 5% deflection of the pipe diameter suggested in the design standards for flexible pipes. For the polyethylene pipe, the material properties of the pipe were identified through a ring stiffness test, and the behavior characteristics in the ground were reviewed through the simulation experiment of the buried polyethylene pipes. In addition, a finite element analysis model was developed based on the results of underground burial simulation experiments, and the behavior characteristics of polyethylene pipes according to backfill conditions were evaluated using the developed finite element analysis model and design equation. As a result of the study, it was confirmed that the capacity of the pipes and the compaction of the backfill are the main factors that determine the structural performance of the buried polyethylene pipe.

Economic Evaluation on Geosynthetic Reinforced Abutment for Railways (토목섬유로 보강된 철도교대의 경제성 평가)

  • Kim, Dae Sang;Kim, Ung-Jin;Sung, Keun-Yeol;Kim, Hak-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.508-517
    • /
    • 2018
  • This study evaluated the construction costs of 11 design cases to decrease the horizontal forces applied to an abutment. They include two kinds of abutment types, which are used to improve the backfill materials for reversed T-shaped abutment and geosynthehtic reinforced abutment for railways (RAR). In the first economic analysis, the internal friction angles of the backfill materials were increased from ${\Phi}=35^{\circ}$ to ${\Phi}=40^{\circ}$ and $50^{\circ}$ for a reversed T-shaped abutment. The second analysis examined cases with the design of a geosynthehtic RAR. When the friction angles were $40^{\circ}$ or $50^{\circ}$ after improvement of the backfill material, the reduction in the construction cost of the abutment was not as large (2.0-3.9%), even though the horizontal forces on the abutment were decreased by 18-48%. However, in the case of applying the RAR, a maximum cost reduction of 30% was achieved by decreasing the horizontal force to zero. The cost reduction results from the decreased wall thickness, base slab size, and the number of pile foundations for the abutment, as well as changing the material.

Effect of Compaction Method on Induced Earth Pressure Using Dynamic Compaction Roller (진동롤러에 의한 다짐방법이 인접구조물의 다짐토압에 미치는 영향)

  • Roh, Han-Sung
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.127-136
    • /
    • 2001
  • To increase the structural integrity of concrete box culvert good compaction by the dynamic compaction roller with bi9 capacity is as effective as good backfill materials. It is needed for effective compaction that a compaction roller closes to concrete structure with high frequency. However structural distress of the culvert could be occur due to the excessive earth pressure by great dynamic compaction load. To investigate the characteristics of Induced stress by compaction, a box culvert was constructed with changing cushion materials and compaction methods. Two types of cushion material such as tire rubber chip and EPS(Expanded Polystyrene) were used as cushion panels and they are set on the culverts before backfill construction. Laboratory test result of cushion material says that the value of dynamic elastic modulus of rubber is lesser than that of EPS. On the other hand, material damping of rubber material is greater than that of EPS. In most case, dynamic compaction rollers with 10.5 ton weights were used and vibration frequency was applied 30Hz for the great compaction energy. This paper presents the main results on the characteristics of dynamic earth pressures during compaction. The amounts of induced dynamic pressures$(\Delta\sigma\;h)$ by compaction are affected with construction condition such as compaction frequency, depth of pressure cell, distance between roller and the wall of culvert and roller direction. Based on the measured values dynamic lateral pressure on the culverts, it could be said that orthogonal direction of roller to the length of culvert is more effective to compaction efficiency than parallel direction.

  • PDF

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.