• Title/Summary/Keyword: structural adequacy

Search Result 135, Processing Time 0.025 seconds

Analytical correction of vertical shortening based on measured data in a RC high-rise building

  • Song, Eun-seok;Kim, Jae-yo
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • In this study, a process is proposed to calculate analytical correction values for the vertical shortening of all columns on all floors in a high-rise building that minimizes the error between the structural analysis predictions and values measured during construction. The weight ratio and the most probable value were accordingly considered based on the properties of the shortening value analyzed at several points in each construction stage and the distance between these measured points and unmeasured points at which the shortening was predicted. The effective range and shortening value normalization were considered using the column grouping concept. These tools were applied to calculate the error ratio between the predicted and measured values on a floor where a measured point exists, and then determine the estimated error ratio and estimated error value for the unmeasured point using this error ratio. At points on a floor where no measured point exists, the estimated error ratio and the estimated error value were calculated by applying the most probable value considering the weight ratio for the nearest floor where measured points exist. In this manner, the error values and estimated error values can be determined at all points in a structure. Then, the analytical correction value, defined as this error or estimated error value, was applied by adding it to the predicted value. Finally, the adequacy of the proposed correction method was verified against measurements by applying the analytical corrections to all unmeasured points based on the points where the measurement exists.

Purchase Intention of Certified Coffee: Evidence from Thailand

  • UT-THA, Veenarat;LEE, Pai-Po;CHUNG, Rebecca H.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.8
    • /
    • pp.583-592
    • /
    • 2021
  • This study examines social identity and self-identity as the antecedents of the theory of planned behavior (TPB) model in predicting purchase intention of certified coffee, whereas perceived trustworthiness (PT) is evaluated whether it directly affects intention and/or indirectly through attitude. In addition, ethics and luxury are investigated as the salient beliefs affecting attitude formation in this regard. A face-to-face survey was conducted with 727 coffee consumers in Thailand. Confirmatory factor analysis is applied to assess the adequacy of the model, followed by structural equation modeling to evaluate the hypotheses proposed for the relationships between constructs in an extended TPB model. The results confirm that self-identity is the most influential antecedent on attitude when compared to social identity, and attitude, in turn, is the strongest determinant in predicting purchase intention. PT has a direct positive effect on purchase intention, meanwhile, ethical, luxury beliefs, and PT are confirmed to portrait the attitude formation. As such the marketing campaigns can address manipulating consumers' beliefs on both ethical and luxury aspects as well as PT, along with consumers' social identity and self-identity to fortify a positive attitude toward certified coffee. Then the actual purchase behavior can be foreseen based on empirical evidence.

An Empirical Investigation of Factors Influencing Innovation and Organizational Performance among Logistics and Supply Chain Organizations in Thailand

  • Rawin VONGURAI
    • Journal of Distribution Science
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • Purpose: As Thailand endeavors to solidify its position in the global supply chain, unraveling the determinants of innovation and performance becomes imperative for sustained competitiveness. This research delves into the multifaceted landscape of logistics and supply chain organizations in Thailand, aiming to identify and understand the key factors that significantly influence innovation and organizational performance in this dynamic sector. Research design, data, and methodology: A questionnaire is developed to survey to 400 employees who have at least one-year experience in selected ten logistics and supply chain organizations in Thailand. The sampling techniques involved judgmental, convenience and snowball sampling. Confirmatory Factor Analysis (CFA) and Structural Equation Modeling (SEM) were employed to assess and validate the model's adequacy and to conduct hypothesis testing. Results: The findings reveal that ICT use significantly influenced entrepreneurial orientation and innovation but has no significant influence on organizational performance. Additionally, innovation was significantly influenced by collective entrepreneurship but not by entrepreneurial orientation. Finally, innovation significantly influenced organizational performance. Conclusions: The study concludes with actionable insights for logistics and supply chain organizations in Thailand. This research serves as a valuable resource for practitioners, policymakers, and researchers seeking to advance the understanding of organizational dynamics in this critical industry.

Seismic Design of Structures in Low Seismicity Regions

  • Lee, Dong-Guen;Cho, So-Hoon;Ko, Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.53-63
    • /
    • 2007
  • Seismic design codes are developed mainly based on the observation of the behavior of structures in the high seismicity regions where structures may experience significant amount of inelastic deformations and major earthquakes may result in structural damages in a vast area. Therefore, seismic loads are reduced in current design codes for building structures using response modification factors which depend on the ductility capacity and overstrength of a structural system. However, structures in low seismicity regions, subjected to a minor earthquake, will behave almost elastically because of the larger overstrength of structures in low seismicity regions such as Korea. Structures in low seismicity regions may have longer periods since they are designed to smaller seismic loads and main target of design will be minor or moderate earthquakes occurring nearby. Ground accelerations recorded at stations near the epicenter may have somewhat different response spectra from those of distant station records. Therefore, it is necessary to verify if the seismic design methods based on high seismicity would he applicable to low seismicity regions. In this study, the adequacy of design spectra, period estimation and response modification factors are discussed for the seismic design in low seismicity regions. The response modification factors are verified based on the ductility and overstrength of building structures estimated from the farce-displacement relationship. For the same response modification factor, the ductility demand in low seismicity regions may be smaller than that of high seismicity regions because the overstrength of structures may be larger in low seismicity regions. The ductility demands in example structures designed to UBC97 for high, moderate and low seismicity regions were compared. Demands of plastic rotation in connections were much lower in low seismicity regions compared to those of high seismicity regions when the structures are designed with the same response modification factor. Therefore, in low seismicity regions, it would be not required to use connection details with large ductility capacity even for structures designed with a large response modification factor.

A Study on the Behavior of Concrete floors with Over-break in Railroad Tunnel (여굴깊이에 따른 철도터널 바닥 콘크리트의 거동에 관한 연구)

  • Yang, Joo-Kyoung;Kim, Hyo-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.101-107
    • /
    • 2017
  • Over-break, which is excavated larger than planned line at tunnel excavation, is inevitable due to the nature of blasting. But regarding the bottom of the foundation, most of the domestic ordering organizations pay only 10 cm thick filled concrete when pouring concrete due to over-break. In accordance, the construction cost will increase greatly if all the depths of the designed over-break are filled only with concrete. When tunnel excavation occurs, concrete filling of 18 MPa(T = 100 mm) and 150 mm~237 mm auxiliary concrete layer and 240 mm concrete track(TCL) are applied to the upper part. The concrete is installed in an excessive amount of about 600 mm between the lower part of the rail and the tunnel rock bed. Therefore, in this study, it is necessary to analyze the concrete crack structure according to the depth of the existing tunnel and the modified tunnel section, and to evaluate the adequacy of the required thickness of the tunnel floor concrete for securing the crack stability of the concrete.

A Comparative Study of LRFD Methods Using Linear Elastic and Nonlinear Inelastic Analysis (선형탄성해석 및 비선형비탄성해석을 이용한 LRFD 설계법의 비교 연구)

  • Jang, Eun Seok;Park, Jung Woong;Kim, Seung Eock
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.633-642
    • /
    • 2007
  • Although the Load and Resistance Factor Design (LRFD) method is an advanced design approach, it does not accurately capture the interaction between individual members and structural system. A nonlinear inelastic analysis for the entire structure is required to solve this problem. According to many design codes of advanced countries, a nonlinear inelastic analysis can be applied to predict the structural behavior and strength reasonably. In this study, an LRFD design method using practical nonlinear inelastic analysis was proposed. Design examples using the proposed method waspresented, and the economical efficiency and adequacy of the proposed method was investigated by comparing the design results with that of the AISC-LRFD. It has been consequently demonstrated that the proposed method can reduce the construction cost through savings in steel.

The adjustment stress and the effect of the social support on the adaptation of the North Korean defectors (탈북자의 적응스트레스와 사회적지지가 적응에 미치는 영향)

  • Kim, Mee-Ryoung
    • 한국사회복지학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.507-532
    • /
    • 2004
  • Due to the increasing concerns with the North Korean defectors, the researches have been increased.. However when compared with other areas, the researches about the North Korean defectors are rare. The sample size of this study is 171, which makes it possible to do statistical inferences. This study examines the adjustment stress and the effect of social support on the adaptation. As a demographic factors, gender, age and education are controlled. The context factors-the period of the stay in the third place, the period of residence and the existence of the education in Korea- are used as control variables. The research results show that the jobless is an important stressor. The structural social support affects the adjustment of stress as a whole and not individually. Among functional social support, the emotional social support is an important factor of adaptation, but the effect of structural social support is the opposite. Therefore, the adequacy of social support must be considered.

  • PDF

Evaluation on Flexural Behavior of Hybrid Beams with Rigid Joint Connecting Steel and Precast Concrete Elements (강재 보-PC 보가 강접합 연결된 하이브리드 보의 휨 거동 평가)

  • Seo, Eun-A;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • A hybrid precast concrete beam system with a simple rigid connection was proposed to compensate the limitations and shortcomings of the conventional bolt connection associated with the H-beams embedded into concrete beams. Three beam specimens with fixed both ends were tested under one-point top cyclic loading to explore the effectiveness of the developed hybrid beam system in transferring externally applied flexure to a column. The main parameter considered was the length ($L_s$) of H-beam, which was selected to be $0.25L_I$, $0.5L_I$, and $1.0L_I$, where $L_I$ is the distance from the support to the point of inflection. All beam specimens showed a better displacement ductility ratio than the reinforced concrete beams with the same longitudinal reinforcement index, indicating that the cyclic load-deflection curve and ductility were insignificantly affected by $L_s$. The continuous strain distribution along the beam length and the prediction of the ultimate load based on the collapse mechanism ascertained the structural adequacy of the developed rigid connection.

Reset of Measurement Control Criteria for Monitoring Data through the Analysis of Measured Data (계측데이터 분석을 통한 모니터링 데이터의 계측관리기준 재설정)

  • Chung, Chul-Hun;An, Ho-Hyun;Shin, Soo-Bong;Kim, Yu-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.105-113
    • /
    • 2014
  • Most operating civil structures measure response data continuously by various types of sensors and evaluate their health conditions. Measurement control criteria for such civil structures are usually defined in the first operating stage by experts working at a construction or engineering company. However, a few studies have been carried to examine the adequacy of these measurement control criteria based on the actual measured data. The paper introduces a systematic way of resetting the measurement control criteria for the measured monitoring data based on the statistical aspects of the measured data. The proposed statistical approach has been examined with actually measured time-history data from a bridge structure.

Behavior of Orthotropic Composite Plate Due to Random Poisson's Ratio (직교이방성 복합적층구조의 거동: 포아송비의 임의성에 의한 영향)

  • Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.627-637
    • /
    • 2009
  • Composite materials have been employed in the various engineering applications due to high mechanical performances including high strength-weight ratio and high degree of free formability. Due to complex manufacturing process, however, it can have intrinsic randomness in the material constants which affect the deterministic behavior of the composite structures. In this study, we suggest a formulation for stochastic finite element analysis considering the spatial randomness of Poisson's ratio. Considering the reciprocal relation between elastic moduli and Poisson's ratios in the two mutually orthogonal axes, one of two values of Poisson's ratio can be expressed in terms of the other. Using this, the relation between stress resultants and strains is derived in the ascending order of power of the stochastic field function, which can be directly used in the formulation to obtain the coefficient of variation of responses. The adequacy of the proposed scheme is demonstrated by comparison with the results of Monte Carlo analysis.