• Title/Summary/Keyword: strouhal number

Search Result 194, Processing Time 0.022 seconds

The near wake of three circular cylinders in an equilateral triangular arrangement at a low Reynolds number Re=100

  • Bai, Honglei;Lin, Yufeng;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.451-463
    • /
    • 2020
  • Two-dimensional numerical simulations are conducted at a low Reynolds number Re = 100 to investigate the near wake of three identical circular cylinders that are arranged in an equilateral triangular configuration. The incident angle of the three-cylinder configuration with respect to incoming flow is varied from θ = 0° to 60°, while the spacing between adjacent cylinders (L) covers a wide range of L/D = 1.25-7.0, where D is diameter of the cylinder. Typical flow structures in the near wake of the three-cylinder configuration are identified, including a single Karman vortex street, bistable flip-flopping near wake, anti-phase and/or in-phase vortex shedding, shear layer reattachment, and vortex impingement, depending on the configuration (L/D, θ). The behavior of Strouhal number (St) is discussed in detail, echoing the distinct structures of near wake. Furthermore, fluid forces on the individual cylinders are examined, which, though highly depending on (L/D, θ), exhibit a close correlation to the near wake behavior.

CHANNEL FLOW WITH A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS - PRIMARY INSTABILITY AND FLOW CHARACTERISTICS - (원형 실린더가 주기적으로 배열된 채널 유동 - 주 불안정성 및 유동특성 -)

  • Yoon, D.H.;Yang, K.S.;Kang, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.352-357
    • /
    • 2010
  • A parametric study has been carried out to elucidate the characteristics of channel flow with a streamwise-periodic array of cylinders. This flow configuration is relevant to heat exchanger applications. The presence of cylinders in channel flow causes the attached wall boundary layer to separate, leading to significant change in flow instabilities. There exist two kinds of instabilities; flow undergoes a primary instability (Hopf bifurcaiton) at a lower Reynolds number, and the unsteady two-dimensional flow becomes unstable to three-dimensional disturbances at a higher Reynolds number. We report here the dependencies of the primary instability as well as the flow characteristics of the subsequent unsteady flow including flow-induced forces and Strouhal number of vortex shedding, on the distance between the cylinder and the channel wall.

  • PDF

PRIMARY INSTABILITY OF THE CHANNEL FLOW WITH A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS - EFFECTS OF THE DISTANCE BETWEEN THE CYLINDER AND THE CHANNEL WALL - (원형 실린더가 주기적으로 배열된 채널 유동의 주 유동 불안정성 - 실린더와 채널 벽 간격의 영향 -)

  • Yoon, D.H.;Yang, K.S.;Kang, C.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.54-59
    • /
    • 2010
  • A parametric study has been carried out to elucidate the characteristics of channel flow with a streamwise-periodic array of cylinders. This flow configuration is relevant to heat exchanger applications. The presence of cylinders in channel flow causes the attached wall boundary layer to separate, leading to significant change in flow instabilities. There exist two kinds of instabilities; flow undergoes a primary instability (Hopf bifurcation) at a lower Reynolds number, and the unsteady two-dimensional flow becomes unstable to three-dimensional disturbances at a higher Reynolds number. We report here the dependencies of the primary instability as well as the flow characteristics of the subsequent unsteady flow, including flow-induced forces and Strouhal number of vortex shedding, on the distance between the cylinder and the channel wall.

SIMULATION OF ENERGY HARVESTING EEL BY THE IMMERSED BOUNDARY METHOD

  • Jung, Ki-Sung;Huang, Wei-Xi;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.197-203
    • /
    • 2008
  • In the present study, we carry out numerical simulations of energy harvesting eel by using the immersed boundary method. Eel is modeled by a flexible filament and is placed behind a circular cylinder. We perform systematic simulations in order to explore the effects of Reynolds number. The instantaneous eel motion is analyzed under different conditions and surrounding vortical structures are identified. The flapping frequency of eel has been compared with that in case of plate alone as well as filament alone. As increasing Reynolds number, we can see that the flexible filament flaps passively by obtaining the Strouhal number of cylinder alone and filament with cylinder.

  • PDF

The Variation of the Wake behind a Circular Cylinder Having Arc Grooves (Groove에 의한 원주 후류의 유동구조 변화)

  • Seo, Seong-Ho;Hong, Cheol-Hyun;Boo, Jung-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.901-907
    • /
    • 2008
  • The measurements of velocity vectors are made in the wake(X/d=8) of a circular cylinder with arc grooves. The experiments are conducted by changing the groove number. groove depth, Reynolds number(Re) and the angle of the first formed groove. We know that the optimum groove angle is 70 degree and the wake velocity profiles are improved at a few conditions. According to vortex shedding frequency distributions. the key solutions to vary the flow field behind the circular cylinder are 70 degree groove angle and more deeper grooves than 0.2mm depth.

SIMULATION OF ENERGY HARVESTING EEL BY THE IMMERSED BOUNDARY METHOD

  • Jung, Ki-Sung;Huang, Wei-Xi;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.197-203
    • /
    • 2008
  • In the present study, we carry out numerical simulations of energy harvesting eel by using the immersed boundary method. Eel is modeled by a flexible filament and is placed behind a circular cylinder. We perform systematic simulations in order to explore the effects of Reynolds number. The instantaneous eel motion is analyzed under different conditions and surrounding vortical structures are identified. The flapping frequency of eel has been compared with that in case of plate alone as well as filament alone. As increasing Reynolds number, we can see that the flexible filament flaps passively by obtaining the Strouhal number of cylinder alone and filament with cylinder.

  • PDF

EFFECTS OF ROUNDING CORNERS ON THE FLOW PAST A SQUARE CYLINDER (정방형 실린더의 모서리 원형화에 따른 유동 불안정성의 변화)

  • Park, Doohyun;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • This study performed numerical analysis for the characteristics of flow-induced forces and the flow instability depending on the cross-sectional shape of the cylinder in laminar flow. To implement the cylinder cross-section, we adopted an Immersed Boundary Method with marker particles. We analyzed flow characteristics based on the radius of corner curvature. Main parameters are corner radius and Reynolds number (Re). With Re = 40, 50, 150 we calculated the flow field, drag coefficient, RMS of lift coefficient, pressure coefficient and Strouhal number in conjunction with the corner radius variation. Also, we calculated critical Reynolds number ($Re_c$) depending on the corner radius variation.

Three-dimensional Laminar Flow Past a Rotating Cylinder (회전하는 원형 실린더 주위의 층류 유동장에 관한 수치적 연구)

  • Lee, Yong-Suk;Yoon, Hyun-Sik;Doo, Jeong-Hoon;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.827-833
    • /
    • 2009
  • The present study numerically investigates three-dimensional laminar flow past a rotating circular cylinder placed in a uniform stream. For the purpose of a careful analysis of the modification of flow by the effect of the rotation on the flow, numerical simulations are performed at a various range of rotational coefficients ($0{\leq}{\alpha}{\leq}2.5$) at one Reynolds number of 300. As ${\alpha}$ increases, flow becomes stabilized and finally a steady state beyond the critical rotational coefficient. The 3D (three dimensional) wake mode of the stationary cylinder defined at this Reynolds number has been disorganized according to ${\alpha}$, which were observed by the visualization of 3D vortical structures. The variation of the Strouhal number is very weak when the wake pattern is changed according to the rotational coefficient. As ${\alpha}$ increases, the lift increases, whereas the drag decreases.

Numerical Prediction of Turbulent Flow over a Circular Cylinder (원봉주위의 난류유동에 대한 수치해석)

  • Park T. S.
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.20-27
    • /
    • 2002
  • Flow over a circular cylinder is studied numerically using a turbulence model. Based on the κ-ε-f/sub μ/ model of Park and Sung[6], a new damping function is used. The efficiency of the strain dependent damping function is addressed for vortex-shedding flows past a circular cylinder. The mean velocity and Reynolds stresses are compared with available experimental data at Re/sub D/= 3900. Also, the computational results for the Strouhal number are evaluated at several Reynolds number. The predictions by κ-ε-f/sub μ/ model are in good agreement with the experiments.

Three-dimensional Laminar Flow past a Rotating Cylinder (회전하는 원형 실린더 주위의 층류 유동장에 관한 수치적 연구)

  • Lee, Yong-Suk;Doo, Jeong-Hoon;Ha, Man-Yeong;Yoon, Hyun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2733-2737
    • /
    • 2008
  • The present study numerically investigates three-dimensional laminar flow past a rotating circular cylinder placed in a uniform stream. For the purpose of a careful analysis of the modification of flow by the effect of the rotation on the flow, numerical simulations are performed at a various range of rotational speeds($0{\leq}{\alpha}{\leq}2.5$) at one Reynolds number of 300. As $\alpha$ increases, flow becomes stabilized and finally a steady state beyond the critical rotational speed. The 3D (three dimensional) wake mode of the stationary cylinder defined at this Reynolds number has been disorganized according to $\alpha$, which were observed by the visualization of 3D vortical structures. The variation of the Strouhal number is significant when the wake pattern is changed according to the rotational speed. As $\alpha$ increases, the lift increases, whereas the drag decreases.

  • PDF