• Title/Summary/Keyword: strong ground motions

Search Result 174, Processing Time 0.024 seconds

Stochastic Strong Ground Motion Simulation at South Korean Metropolises' Seismic Stations Based on the 2016 Gyeongju Earthquake Causative Fault (2016년 경주지진 원인단층의 시나리오 지진에 의한 국내 광역도시 지진관측소에서의 추계학적 강진동 모사)

  • Choi, Hoseon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.233-240
    • /
    • 2021
  • The stochastic method is applied to simulate strong ground motions at seismic stations of seven metropolises in South Korea, creating an earthquake scenario based on the causative fault of the 2016 Gyeongju earthquake. Input parameters are established according to what has been revealed so far for the causative fault of the Gyeongju earthquake, while the ratio of differences in response spectra between observed and simulated strong ground motions is assumed to be an adjustment factor. The calculations confirm the applicability and reproducibility of strong ground motion simulations based on the relatively small bias in response spectra between observed and simulated strong ground motions. Based on this result, strong ground motions by a scenario earthquake on the causative fault of the Gyeongju earthquake with moment magnitude 6.5 are simulated, assuming that the ratios of its fault length to width are 2:1, 3:1, and 4:1. The results are similar to those of the empirical Green's function method. Although actual site response factors of seismic stations should be supplemented later, the simulated strong ground motions can be used as input data for developing ground motion prediction equations and input data for calculating the design response spectra of major facilities in South Korea.

Analysis of Amplication Factor of Response Spectrum using Strong Ground Motions Compatible to the Domestic Seismotectonic Characteristics (유사 강지진동을 이용한 지반응답의 Amplication Factor 스펙트럼 분석)

  • 김준경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.88-93
    • /
    • 1997
  • Amplication factor spectrum has been obtained and compared with standard Response Spectrum using the observed strong ground motions database. The observed ground motions from the Miramichi, Nahanni, Saguenay and New Madrid Earthquake (vertical component 19. horizontal component 36). which are estimated to represent domestic seismotectonic characteristics such as seismic source, attenuation, and site effect, are used for the analysis of amplication factor spectrum. Amplication factor has been calculated using both observed peak values and results from responses to the observed horizontal and vertical ground motions. The comparison shows that the amplication factors resultant from this study exceeds those of Standard Response Spectrum at relatively higher frequencies. The results implie that the characteristics of the seismic strong ground motion which may represent the domestic seismotectonic characteristics differs from those of Standard Response Spectrum, which are resultant from the strong ground motions observed mainly at the westem United States.

  • PDF

Seismic design strategy of cable stayed bridges subjected to strong ground motions

  • Xu, Yan;Duan, Xinzhi;Li, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.909-922
    • /
    • 2014
  • In this paper, we present an alternative seismic design strategy for cable stayed bridges with concrete pylons when subjected to strong ground motions. The comparison of conventional seismic design using supplemental dampers (strategy A) and the new strategy using nonlinear seismic design of pylon columns (strategy B) is exemplified by one typical medium span cable stayed bridge subjected to strong ground motions from 1999 Taiwan Chi-Chi earthquake and 2008 China Wenchuan earthquake. We first conducted the optimization of damper parameters according to strategy A in response to the distinct features that strong ground motions contain. And then we adopted strategy B to carry out seismic analysis by introducing the elastic-plastic elements that allowing plasticity development in the pylon columns. The numerical results show that via strategy A, the earthquake induced structural responses can be kept in the desired range provided with the proper damping parameters, however, the extra cost of unusual dampers will be inevitable. For strategy B, the pylon columns may not remain elastic and certain plasticity developed, but the seismic responses of the foundation will be greatly decreased, meanwhile, the displacement at the top of pylon seems to be not affected much by the yielding of pylon columns, which indicates the pylon nonlinear design can be an alternative design strategy when strong ground motions have to be considered for the bridge.

A Study on the Synthesis of Strong Ground Motion using Empirical Green Function (경험적 그린함수를 이용한 강지진동 합성에 관한 연구)

  • Kim, Jun-Kyoung;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.17-23
    • /
    • 2006
  • The research on strong ground motions became important recently due to more severe requirement of seismic design for the domestic buildings and structures. The empirical Green's function method, which uses similarities between small and large earthquakes, was applied to make synthetic ground motions. That method was applied to the 2 earthquakes which occurred sequently in time within narrow area in Japan. The strong ground motions for the virtual earthquake (magnitude 6.5) were synthesized using those observed from the magnitude 4.7 earthquake. Then, the synthesized ground motions (acceleration, velocity, and displacement) were compared to those observed from real earthquake (magnitude 6.5). The results showed that the general shapes of waveforms in time domain and the Fourier spectrum In frequency domain from synthesized ground motions (acceleration, velocity, and displacement) are similar to the observed strong ground motions within acceptable degree. The peak values of 3 kinds of synthesized strong ground motions in time domain are comparable between the synthesized and the real strong ground motions, especially only about 9% difference in acceleration peak value.

Characteristics of Spectrum using Observed Ground Motions from the Yongwol and the KyoungJu Earthquakes (영월 및 경주지진 파형의 주파수 분석)

  • 김준경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.407-412
    • /
    • 1998
  • Amplification factor spectrum, using the observed strong ground motions database, has been obtained and compared with Standard Response Spectrum, which were suggested by US NRC. The observed ground motions from the Yongwol and the Kyoungju Earthquake, respectively, which are suppose to represent domestic seismotectonic characteristics such as seismic source, attenuation, and site effect, are used for the analysis of amplification factor spectrum. Amplification factors have been calculated by comparing the observed peak ground motions with results from responses to the observed horizontal and vertical ground motions. The comparison shows that the amplification factors resultant from this study exceeds those of Standard Response Spectum at relatively higher frequencies. The results suggest that the characteristics of the seismic strong ground motion, which are supposed to represent the domestic seismotectonic characteristics, differs from those of Standard Response Spectrum, especially at hither frequencies

  • PDF

Stochastic Prediction of Strong Ground Motions and Attenuation Equations in the Southeastern Korean peninsular (한반도 동남부의 강진동 모사와 감쇠식)

  • 이정모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.70-80
    • /
    • 2000
  • In order to reduce seismic hazard the characteristics of strong earthquakes are required. In the region where strong earthquakes do not happen frequently the stochastic simulation of strong motion is an alternative way to predict strong motions. this simulation required input parameters such as the quality factor the corner frequency the moment magnitude the stress drop and so on which can be obtained from analyses of records of small and intermediate earthquakes. Using those parameters obtained in the previous work the strong ground motions are predicted employing the stochastic method, . The results are compared to the two observed earthquakes-the Ulsan Offshore Earthquake and the Kyungju Earthquake. Although some deviations are found the predictions are similar to the observed data. Finally we computed attenuation equations for PGA PGV and ground accelerations for some frequencies using the results of predictions. These results can be used for earthquake engineering and more reliable results will come out as earthquake observations continue.

  • PDF

Characteristics of Spectrum using Observed Ground Motion from the Yongwol and the Kyoungju Earthquakes(II) (영월 및 경주지진 파형의 주파수 분석(II))

  • 김준경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.57-60
    • /
    • 1999
  • Amplification factor spectrum using the observed strong ground motions database in the Korean Peninsula has been obtained and compared with Standard Rpectrum which wa suggested by United States Nuclear Regulatory Committee. The observed ground motions from the Yongwol and the Kyoungju Earthquakes respectively which are supposed to represent domestic seismotectonic characteristics such as seismic source attenuation of the propagation meium and site specific effect are used for the analysis of amplification factor spectrum,. The database are slightly different from the those of the second study. Amplification factors have been calculated by comparing the observed peak ground motions with results from responses to the observed horizontal na vertical ground motions. The comparison have shown that the amplification factors resultant from this study exceeds those of Standard Response Spectrum The results suggest that the characteristics of seismic strong ground motion which are supposed to represent the domestic seismotectonic characteristics differs from those of Standard Response Spectrum especially at higher frequencies. The results from the 2nd study are similar to those of 1st analysis.

  • PDF

Characteristics of Response Spectrum using Observed Ground Motion from the Recent Earthquakes (내진설계를 위한 응답스펙트럼 연구)

  • Kim, Jun-Kyoung
    • Proceedings of the KSEEG Conference
    • /
    • 1999.04a
    • /
    • pp.116-119
    • /
    • 1999
  • Amplification factor spectrum, using the observed strong ground motions database in the Korean Peninsula, has been obtained and compared with Standard Response Spectrum, which was suggested by United States Nuclear Regulatory Committee. The observed und motions from the Yongwol and the Kyoungju, and the other recent Earthquakes, respectively, which ate supposed to represent domestic seismotectonic characteristics such as seismic source, attenuation of the propagation medium, and site specific effect, are used for the analysis of amplification factor spectrum. The database are slightly different from the those of the second study. Amplification factors hue been calculated by comparing the observed peak ground motions with results from responses to the observed horizontal na vertical ground motions. The comparison have shown that the amplification factors resultant from this study exceeds these of Standard Response Spectrum, The results suggest that the characteristics of seismic strong ground motion, which are supposed to represent the domestic seismotectonic characteristics, differs from those of Standard Response Spectrum, especially at higher frequencies. The results from the 2nd study are similar to those of 1st analysis.

  • PDF

Influence of concurrent horizontal and vertical ground excitations on the collapse margins of non-ductile RC frame buildings

  • Farsangi, E. Noroozinejad;Yang, T.Y.;Tasnimi, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.653-669
    • /
    • 2016
  • Recent earthquakes worldwide show that a significant portion of the earthquake shaking happens in the vertical direction. This phenomenon has raised significant interests to consider the vertical ground motion during the seismic design and assessment of the structures. Strong vertical ground motions can alter the axial forces in the columns, which might affect the shear capacity of reinforced concrete (RC) members. This is particularly important for non-ductile RC frames, which are very vulnerable to earthquake-induced collapse. This paper presents the detailed nonlinear dynamic analysis to quantify the collapse risk of non-ductile RC frame structures with varying heights. An array of non-ductile RC frame architype buildings located in Los Angeles, California were designed according to the 1967 uniform building code. The seismic responses of the architype buildings subjected to concurrent horizontal and vertical ground motions were analyzed. A comprehensive array of ground motions was selected from the PEER NGA-WEST2 and Iran Strong Motions Network database. Detailed nonlinear dynamic analyses were performed to quantify the collapse fragility curves and collapse margin ratios (CMRs) of the architype buildings. The results show that the vertical ground motions have significant impact on both the local and global responses of non-ductile RC moment frames. Hence, it is crucial to include the combined vertical and horizontal shaking during the seismic design and assessment of non-ductile RC moment frames.

Near-fault ground motion effects on the nonlinear response of dam-reservoir-foundation systems

  • Bayraktar, Alemdar;Altunisik, Ahmet Can;Sevim, Baris;Kartal, Murat Emre;Turker, Temel
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.411-442
    • /
    • 2008
  • Ground motions in near source region of large crustal earthquakes are significantly affected by rupture directivity and tectonic fling. These effects are the strongest at longer periods and they can have a significant impact on Engineering Structures. In this paper, it is aimed to determine near-fault ground motion effects on the nonlinear response of dams including dam-reservoir-foundation interaction. Four different types of dam, which are gravity, arch, concrete faced rockfill and clay core rockfill dams, are selected to investigate the near-fault ground motion effects on dam responses. The behavior of reservoir is taken into account by using Lagrangian approach. Strong ground motion records of Duzce (1999), Northridge (1994) and Erzincan (1992) earthquakes are selected for the analyses. Displacements, maximum and minimum principal stresses are determined by using the finite element method. The displacements and principal stresses obtained from the four different dam types subjected to these nearfault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts on the dam types.