• Title/Summary/Keyword: strong electromagnetic coupling

Search Result 25, Processing Time 0.017 seconds

Multiple Antenna System for Next Generation Mobile Communication (차세대 이동 통신용 다중 안테나 시스템)

  • Han, Min-Seok;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.660-669
    • /
    • 2010
  • In this paper, a multiple antenna system for next generation mobile applications is proposed. The proposed MIMO antenna consists of two parallel folded monopole antennas with the length of 100 mm and spacing of 6 mm and a decoupling network which locates at the top side of a mobile handset. In order to improve the isolation characteristic at the LTE band 13, a decoupling network was added between the two antenna elements placed close to each other. The decoupling network, consisting of two transmission lines, a shunt reactive component and common ground line, is simple and compact. To obtain the wide bandwidth characteristic, an wide folded patch structure generating the strong coupling between feeding and shorting lines through the slit is used at the bottom side of a mobile handset. Also, the performance of a multiple antenna system composed of three antenna elements is analyzed.

Resonant Transmission of a Rectangular Waveguide Probe with H-type Small Aperture (H-형태 소형 개구를 가진 직사각형 도파관 탐침의 공진 투과)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1198-1204
    • /
    • 2013
  • As a microwave near field probe for near field scanning optical microscope(NSOM) system, H-shaped(ridge type) small aperture is proposed and its performances from the viewpoints of the transmission efficiency(transmission cross section) and spatial confinement(beam spot size) are compared with those of the previous narrow rectangular aperture type. While the transmission efficiencies are comparable to each other for the two structures, the transmitted beam spot size for the proposed H-shaped aperture is much smaller than that for the previous rectangular aperture. This strong point of the H-shaped aperture is expected to significantly improve near-field optical applications such as optical data storage, nanolithography and nanomicroscopy. It is also observed that the transmission efficiency can be improved if the coupling aperture is implemented in the type of the transmission cavity.

The Magnetic and Thermal Properties of a Heavy Fermion CeNi2Ge2 (헤비페르미온계 CeNi2Ge2의 자기 및 열적 특성)

  • Jeong, Tae Seong
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.451-455
    • /
    • 2019
  • The electromagnetic and thermal properties of a heavy fermion $CeNi_2Ge_2$ are investigated using first-principle methods with local density approximation (LDA) and fully relativistic approaches. The Ce f-bands are located near the Fermi energy $E_F$ and hybridized with the Ni-3d states. This hybridization plays important roles in the characteristics of this material. The fully relativistic approach shows that the 4f states split into $4f_{7/2}$ and $4f_{5/2}$ states due to spin-orbit coupling effects. It can be found that within the LDA calculation, the density of states near the Fermi level are mainly of Ce-derived 4f states. The Ni-derived 3d states have high peaks around -1.7eV and spreaded over wide range around the Fermi level. The calculated magnetic of $CeNi_2Ge_2$ with LDA method does not match with that of experimental result because of strong correlation interaction between electrons in f orbitals. The calculations show that the specific heat coefficient underestimates the experimental value by a factor of 19.1. The discrepancy between the band calculation and experiment for specific heat coefficient is attributed to the formation of a quasiparticle. Because of the volume contraction, the exchange interaction between the f states and the conduction electrons is large in $CeNi_2Ge_2$, which increases the quasiparticle mass. This will result in the enhancement of the specific hear coefficient.

Enhancement of Photoluminescence by Ag Localized Surface Plasmon Resonance for Ultraviolet Detection

  • Lyu, Yanlei;Ruan, Jun;Zhao, Mingwei;Hong, Ruijin;Lin, Hui;Zhang, Dawei;Tao, Chunxian
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • For higher sensitivity in ultraviolet (UV) and even vacuum ultraviolet (VUV) detection of silicon-based sensors, a sandwich-structured film sensor based on Ag Localized Surface Plasmon Resonance (LSPR) was designed and fabricated. This film sensor was composed of a Ag nanoparticles (NPs) layer, SiO2 buffer and fluorescence layer by physical vapour deposition and thermal annealing. By tuning the annealing temperature and adding the SiO2 layer, the resonance absorption wavelength of Ag NPs matched with the emission wavelength of the fluorescence layer. Due to the strong plasmon resonance coupling and electromagnetic field formed on the surface of Ag NPs, the radiative recombination rate of the luminescent materials and the number of fluorescent molecules in the excited state increased. Therefore, the fluorescent emission intensity of the sandwich-structured film sensor was 1.10-1.58 times at 120-200 nm and 2.17-2.93 times at 240-360 nm that of the single-layer film sensor. A feasible method is provided for improving the detection performance of UV and VUV detectors.

Frontiers in Magneto-optics of Magnetophotonic Crystals

  • Inoue, M.;Fedyanin, A.A.;Baryshev, A.V.;Khanikaev, A.B.;Uchida, H.;Granovsky, A.B.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.195-207
    • /
    • 2006
  • The recently published and new results on design and fabrication of magnetophotonic crystals of different dimensionality are surveyed. Coupling of polarized light to 3D photonic crystals based on synthetic opals was studied in the case of low dielectric contrast. Transmissivity of opals was demonstrated to strongly depend on the propagation direction of light and its polarization. It was shown that in a vicinity of the frequency of a single Bragg resonance in a 3D photonic crystal the incident linearly polarized light excites inside the crystal the TE- and TM-eigen modes which passing through the crystal is influenced by Brags diffraction of electromagnetic field from different (hkl) sets of crystallographic planes. We also measured the faraday effect of opals immersed in a magneto-optically active liquid. It was shown that the behavior of the faraday rotation spectrum of the system of the opal sample and magneto-optically active liquid directly interrelates with transmittance anisotropy of the opal sample. The photonic band structure, transmittance and Faraday rotation of the light in three-dimensional magnetophotonic crystals of simple cubic and face centered cubic lattices formed from magneto-optically active spheres where studied by the layer Korringa-Kohn-Rostoker method. We found that a photonic band structure is most significantly altered by the magneto-optical activity of spheres for the high-symmetry directions where the degeneracies between TE and TM polarized modes for the corresponding non-magnetic photonic crystals exist. The significant enhancement of the Faraday rotation appears for these directions in the proximity of the band edges, because of the slowing down of the light. New approaches for one-dimensional magnetophotonic crystals fabrication optimized for the magneto-optical Faraday effect enhancement are proposed and realized. One-dimensional magnetophotonic crystals utilizing the second and the third photonic band gaps optimized for the Faraday effect enhancement have been successfully fabricated. Additionally, magnetophotonic crystals consist of a stack of ferrimagnetic Bi-substituted yttrium-iron garnet layers alternated with dielectric silicon oxide layers of the same optical thickness. High refractive index difference provides the strong spatial localization of the electromagnetic field with the wavelength corresponding to the long-wavelength edge of the photonic band gap.