• Title/Summary/Keyword: strong coupling

Search Result 304, Processing Time 0.026 seconds

Directional Radiation Pattern Design Using Structural-Acoustic Coupling (구조-음향 연성현상을 이용한 지향성 방사패턴 설계)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.751-754
    • /
    • 2004
  • This paper presents a design of the directional radiation pattern by using the structural-acoustic interaction. For this purpose, prediction of the pressure distribution of the field points and radiation pattern of the structural-acoustic coupling system is shown. In order to get a strong coupling, coupled system that has a finite space and a semi-infinite space separated by two flexible walls and an opening is selected. A volume interaction can be occurred in structure boundary and a pressure interaction can be happened in the opening boundary. The coupled system is maximized the radiation power on the main axis and minimized the side lobe level.

  • PDF

Investigation of the effects of common and separate ground systems in wireless power transfer

  • Park, Woocheon;Moon, Jung-Ick;Cho, In-kui
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.339-345
    • /
    • 2022
  • This article presents an investigation of the effects on a grounding system of wireless power transfer (WPT) when transmitting over relatively far distances, that is, up to 1.25 m. Conventional two-coil WPT systems are sufficiently commercialized in strong coupling range, but it is important to accomplish the long-range WPT in weak coupling range for further various applications. This system depends on the coupling effect between the two coils that the grounds of the transmitting and receiving coils should be completely separated. However, when evaluating the performance of two-coil systems with the instrument consisting of two ports and one common ground, undesirable problems occur in weak coupling ranges, for example, obtaining disagreeable transmission efficiency and degrading system stability/reliability. We investigate the problems of the leakage power from common ground systems and provide a practical solution to obtain a reliable WPT system by using an isolation transformer. The usefulness of this approach is that it is possible to achieve the stability of the system with relatively far transmitting distances and to determine the exact transmission efficiency.

Oxidative Coupling Polymerization of Diethynylsilane Derivatives and 1,2-Diethynyl-1,1,2,2-tetramethyldisilane

  • Kim, Ji-Ho;Park, Young-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.869-874
    • /
    • 2006
  • We have carried out the Glaser oxidative coupling polymerizations of diethynyldiphenylsilane, diethynylmethylphenylsilane,diethynylmethyloctylsilane, and 1,2-diethynyl-1,1,2,2-tetramethyldisilane to afford polycarbosilanes containing diethynyl and organosilane groups in the main chain, such as poly(diethynyldiphenylsilane), poly(diethynylmethylphenylsilane), poly(diethynylmethyloctylsilane), and poly(1,2-diethynyl-1,1,2,2-tetramethyldisilane), respectively. These obtained materials are almost insoluble in common organic solvents such as $CHCl_3$ and THF probably due to the presence of a rigid rod diacetylene group along the polymer main chain. Therefore, the polymers were characterized using several spectroscopic methods in solid state. FTIR spectra of all the polymeric materials show that the characteristic $C \equiv C$ stretching frequencies appear at 2147-2154 $cm ^{-1}$, in particular. The polymers in the solid state exhibit that the strong maximum excitation peaks appear at 260-283 nm and the strong maximum fluorescence emission bands at 367-412 nm, especially. Thermogravimetric analysis of the materials shows that about 55-68% of the initial polymer weights remain at 400 ${^{\circ}C}$ in nitrogen.

Ultrafast probes of coherent oscillations in Fe-based superconductors

  • Kim, K.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.1-4
    • /
    • 2017
  • Forefront ultrafast experimental techniques have recently proven their potential as new approaches to understand materials based on non-equilibrium dynamics in the time domain. The time domain approach is useful especially in disentangling complicated coupling among charge, spin and lattice degrees of freedom. Various ultrafast experiments on Fe-based superconductors have observed strong coherent oscillations of an $A_{1g}$ phonon mode of arsenic ions, which shows strong coupling to the electronic and magnetic states. This paper reviews the recent reports of ultrafast studies on Fe-based superconductor with a focus on the coherent oscillations. Experimental results with ultrashort light sources from the terahertz-infrared pulses to the hard X-rays from a free electron laser will be presented.

Free vibration of primary-secondary structures with multiple connections (다중 지지된 주-부 구조물의 자유진동)

  • 민경원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.63-68
    • /
    • 1991
  • The frequency window method has been extended to include strong coupling and multiple connections between the primary structure and the secondary structures. The rational polynomial expansion of the eigenvalue problem and the analytical methods for its solution are novel and distinguish this work from other eigenvalue analysis methods. The key results are the identification of parameters which quantify the resonance and coupling characteristics; the derivation of analytical dosed-form expressions describing the fundamental modal properties of the frequency windows; and the development of an iterative procedure which yields accurate convergent results for strongly-coupled primary-secondary structures.

  • PDF

A Study on the Design of Directional Coupler with high Directivity (높은 지향성을 갖는 방향성 결합기 설계에 관한 연구)

  • 지일구;정정화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.921-928
    • /
    • 2003
  • This paper propose a new design of directional couplers with the high directivity. The directional coupler is used to check and verify the power, frequency and antenna reflection of a signal at transmission station for the mobile communications. The performance index of the directional coupler is to which the coupling is strong to reduce the effect on the transmitted power and the directivity is high to suppress the interference of the reflected signals and reduce the nor in the communication. Then, the architectures to gain the high directivity and the studies to get the strong coupling have been proposed However, the conventional architectures lot the high directivity and strong coupling have the directivity by about 20㏈ and the difficulty to achieve the higher directivity than 40㏈ suitable for IMT-2000 [1]. This paper proposes an architecture of the directional coupler which is based on the grounding composed of the strip lines and the comparison results with the conventional directional couplers. The comparison results show that the proposed directional coupler has the directivity more than 40 ㏈ and is adequate for the 2.05GHz IMT-2000

Dynamics of a Globular Protein and Its Hydration Water Studied by Neutron Scattering and MD Simulations

  • Kim, Chan-Soo;Chu, Xiang-Qiang;Lagi, Marco;Chen, Sow-Hsin;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.21-21
    • /
    • 2011
  • A series of Quasi-Elastic Neutron Scattering (QENS) experiments helps us to understand the single-particle (hydrogen atom) dynamics of a globular protein and its hydration water and strong coupling between them. We also performed Molecular Dynamics (MD) simulations on a realistic model of the hydrated hen-egg Lysozyme powder having two proteins in the periodic box. We found the existence of a Fragile-to-Strong dynamic Crossover (FSC) phenomenon in hydration water around a protein occurring at TL=$225{\pm}5K$ by analyzing Intermediate Scattering Function (ISF). On lowering of the temperature toward FSC, the structure of hydration water makes a transition from predominantly the High Density Liquid (HDL) form, a more fluid state, to predominantly the Low Density Liquid (LDL) form, a less fluid state, derived from the existence of a liquid?liquid critical point at an elevated pressure. We showed experimentally and confirmed theoretically that this sudden switch in the mobility of the hydration water around a protein triggers the dynamic transition (so-called glass transition) of the protein, at a temperature TD=220 K. Mean Square Displacement (MSD) is the important factor to show that the FSC is the key to the strong coupling between a protein and its hydration water by suggesting TL${\fallingdotseq}$TD. MD simulations with TIP4P force field for water were performed to understand hydration level dependency of the FSC temperature. We added water molecules to increase hydration level of the protein hydration water, from 0.30, 0.45, 0.60 and 1.00 (1.00 is the bulk water). These confirm the existence of the FSC and the hydration level dependence of the FSC temperature: FSC temperature is decreased upon increasing hydration level. We compared the hydration water around Lysozyme, B-DNA and RNA. Similarity among those suggests that the FSC and this coupling be universal for globular proteins, biopolymers.

  • PDF

Modeling and coupling characteristics for an airframe-propulsion-integrated hypersonic vehicle

  • Lv, Chengkun;Chang, Juntao;Dong, Yilei;Ma, Jicheng;Xu, Cheng
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.553-570
    • /
    • 2020
  • To address the problems caused by the strong coupling of an airbreathing hypersonic vehicle's airframe and propulsion to the integrated control system design, an integrated airframe-propulsion model is established, and the coupling characteristics between the aircraft and engine are analyzed. First, the airframe-propulsion integration model is established based on the typical nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle and the one-dimensional dual-mode scramjet model. Thrust, moment, angle of attack, altitude, and velocity are used as transfer variables between the aircraft model and the engine model. The one-dimensional scramjet model can accurately reflect the working state of the engine and provide data to support the coupling analysis. Second, owing to the static instability of the aircraft model, the linear quadratic regulator (LQR) controller of the aircraft is designed to ensure attitude stability and height tracking. Finally, the coupling relationship between the aircraft and the engine is revealed through simulation examples. The interaction between vehicle attitude and engine working condition is analyzed, and the influence of vehicle attitude on engine safety is considered. When the engine is in a critical working state, the attitude change of the aircraft will not affect the engine safety without considering coupling, whereas when coupling is considered, the attitude change of the aircraft may cause the engine unstart, which demonstrates the significance of considering coupling characteristics.

Effect of a Finite Substrate on the Mutual Coupling of a Pair of Microstrip Patch Antennas along the H-plane (유한한 기판 크기가 H-평면상에 배열된 두 개의 패치안테나간의 상호결합에 미치는 영향)

  • Kim, Gun-Su;Kim, Tae-Young;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.67-73
    • /
    • 2010
  • In this paper, the effect of a finite substrate on the mutual coupling of a pair of microstrip patch antennas along the H -plane is investigated. The mutual coupling of a pair of microstrip patch antennas can be reduced using the interference effect due to the phase difference by a variety of routes of the surface wave. In the case of the substrate with $\varepsilon_r$=10 and thickness of 3.2 mm, the mutual coupling is reduced by 4.85 dB on the substrate size with the strong mutual coupling, while the mutual coupling is reduced by 34.28 dB on the substrate size with the weak mutual coupling when the distance between the antenna centers is varied from 0.5 $\lambda_0$ to 1.0 $\lambda_0$. In the case of optimization substrate size, the decreasing rate of the mutual coupling with the increase of the distance between the antenna centers is very large. Good agreements between the image method and full wave simulation results are obtained.

Ligand Effect in Recycled CNT-Pd Heterogeneous Catalyst for Decarboxylative Coupling Reactions

  • Kim, Ji Dang;Pyo, Ayoung;Park, Kyungho;Kim, Gwui Cheol;Lee, Sunwoo;Choi, Hyun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2099-2104
    • /
    • 2013
  • We present here an efficient and simple method for preparation of highly active Pd heterogeneous catalyst (CNT-Pd), specifically by reaction of dichlorobis(triphenylphosphine)palladium ($Pd(PPh_3)_2Cl_2$) with thiolated carbon nanotubes (CNTs). The as-prepared CNT-Pd catalysts demonstrated an excellent catalytic activity for the carbon-carbon (C-C) cross-coupling reactions (i.e. Suzuki, Stille, and decarboxylative coupling reactions) under mild conditions. The CNT-Pd catalyst could easily be removed from the reaction mixture; additionally, in the decarboxylative coupling of iodobenzene and phenylpropiolic acid, it showed a six-times recyclability, with no loss of activity. Moreover, once its activity had decreased by repeated recycling, it could easily be reactivated by the addition of phosphine ligands. The remarkable recyclability of the decarboxylative coupling reaction is attributable to the high degree of dispersion of Pd catalysts in CNTs. Aggregation of the Pd catalysts is inhibited by their strong adhesion to the thiolated CNTs during the chemical reactions, thereby permitting their recycling.