• Title/Summary/Keyword: strong cation ion exchange

Search Result 22, Processing Time 0.026 seconds

Determination of cyromazine residues in agricultural commodities using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 Cyromazine의 잔류분석법)

  • Song, Lee-Seul;Kim, Young-Hak;Lee, Su-Jin;Hwang, Young-Sun;Kwon, Chan-Hyeok;Do, Jung-Ah;Oh, Jae-Ho;Im, Moo-Hyeog;Chang, Woo-Suk;Lee, Young-Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.3
    • /
    • pp.202-208
    • /
    • 2012
  • A high-performance liquid chromatographic (HPLC) method was developed to determine residues of cyromazine, a triazine insecticide, in agricultural commodities. Cyromazine was extracted with 90% aqueous methanol from representative crops which comprised brown rice, oyster mushroom, oriental melon, watermelon, and Chinese cabbage. Following to evaporation of methanol in the extract, the aqueous concentrate was acidified to form the protonated cyromazine. Dichloromethane partition was then applied to remove nonpolar co-extractives in the aqueous phase. Strong cation-exchange chromatography using Dowex 50W-X4 resin was employed for final purification of the extract. Cyromazine was successfully separated on a Zorbax SB-Aq $C_{18}$ column showing high retention for polar compounds. Cyromazine was sensitively quantitated by ultraviolet absorption at 214 nm. Limit of quantitation (LOQ) of the method was 0.04 mg/kg irrespective of sample types. Each crops were fortified at 3 different concentrations of cyromazine for recovery test. Mean recoveries from samples fortified at LOQ~2.0 mg/kg in triplicate ranged 80.2~103.3% in five agricultural commodities. Relative standard deviations in recoveries were all less than 6%. A selected-ion monitoring LC/MS method with electrospray ionization in positive-ion mode was also provided to confirm the suspected residue. The proposed method was reproducible and sensitive enough to routinely determine and inspect the residue of cyromazine in agricultural commodities.

Scaling up Hydrothermal Synthesis of Na-A Type Zeolite from Natural Siliceous Mudstone and Its Heavy Metal Adsorption Behavior (규질 이암으로부터 Na-A형 제올라이트의 scale-up 수열합성 및 중금속흡착)

  • Bae, In-Kook;Jang, Young-Nam;Shin, Hee-Young;Chae, Soo-Chun;Ryu, Kyoung-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.341-347
    • /
    • 2008
  • The feasibility of commercializing the hydrothermal synthesis of Na-A type zeolite from siliceous mudstone has been conducted using a 50-liter bench-scale autoclave and the application of the zeolite as an environmental remediation agent. Siliceous mudstone, which is widely distributed around the Pohang area, was adopted as a precursor. The siliceous mudstone is favorable for the synthesis of zeolite because it contains 70.7% $SiO_2$ and 10.0% $Al_2O_3$, which are major ingredient of zeolite formation. The synthesis of zeolite was carried out under the following conditions that had been obtained from the previous laboratory-scale tests: 10hr reaction time, $80^{\circ}C$ reaction temperature, $Na_2O/SiO_2$ ratio = 0.6, $SiO_2/Al_2O_3$ ratio = 2.0 and $H_2O/Na_2O$ ratio= 98.6. The crystallinity and morphology of the zeolite formed were similar to those obtained from the laboratory-scale tests. The recovery and cation exchange ion capacity were 95% and 215 cmol/kg, respectively, which are slightly higher than those obtained in laboratory scale tests. To examine the feasibility of the zeolite as an environmental remediation agent, experiments for heavy metal adsorption to zeolite were conducted. Its removal efficiencies of heavy metals in simulated waste solutions decreased in the following sequences: Pb > Cd > Cu = Zn > Mn. In a solution of 1500 mg/L total impurity metals, the removal efficiencies for these impurity metals were near completion (> 99%) except for Mn whose efficiency was 98%. Therefore, the synthetic Na-A type zeolite was proven to be a strong absorbent effective for removing heavy metals.