• Title/Summary/Keyword: strips of paper

Search Result 206, Processing Time 0.024 seconds

Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application

  • Aksoylu, Ceyhun
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.845-865
    • /
    • 2022
  • In this study, the performance of shear deficient reinforced concrete (RC) beams with rectangular cross-sections, which were externally bonded reinforced (EBR) with high strength CFRP and GFRP strips composite along shear spans, has been experimentally and analytically investigated under vertical load. In the study, the minimum CFRP and GFRP strips width over spacing were considered. The shear beam with turned end to a bending beam was investigated by applying different composite strips. Therefore various arising in each of strength, ductility, rigidity, and energy dissipation capacity were obtained. A total of 12 small-scaled experimental programs have been performed. Beam dimensions have been taken as 100×150×1000 mm. Four beams have been tested as unstrengthened samples. This paper focuses on the effect of minimum CFRP and GFRP strip width on behaviours of RC beams shear-strengthened with full-wrapping, U-wrapping, and U-wrapping+longitudinal bonding strips. Strengthened beams showed significant increments for flexural ductility, energy dissipation, and inelastic performance. The full wrapping strips applied against shear failure have increased the load-carrying capacity of samples 53%-63% interval rate. Although full wrapping is the best strengthening choice, the U-wrapping and U-wrapping+longitudinal strips of both CFRP and GFRP bonding increased the shear capacity by 53%~75% compared to the S2 sample. In terms of ductility, the best result has been obtained by the type of strengthening where the S5 beam was completely GFRP wrapped. The experimental results were also compared with the analytically given by ACI440.2R-17, TBEC-2019 and FIB-2001. Especially in U-wrapped beams, the estimation of FIB was determined to be 81%. The estimates of the other codes are far from meeting the experimental results; therefore, essential improvements should be applied to the codes, especially regarding CFRP and GFRP deformation and approaches for longitudinal strip connections. According to the test results, it is suggested that GFRP, which is at least as effective but cheaper than CFRP, may be preferred for strengthening applications.

Conservation of Golden Decorative(Jikgeumdan) Jeogori and Chima of Costumes Excavated from Hangju Gi' Tomb of Angang, Kyungsangbukdo Province - Re-adhesion of Gold Leaves in Gilt Paper Strips - (경상북도 안강 행주 기씨 묘 출토 직금단 치마와 저고리 보존처리 - 직금단 편금사의 금박 재접착을 중심으로 -)

  • Oh, Joon-Suk;Noh, Soo-Jung
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.9
    • /
    • pp.67-75
    • /
    • 2007
  • The purpose of this research is to conserve of golden decoration(Jikgeumdan) of Chima(skirt) and Jeogori(Korean jacket) of the costumes excavated from Hangju Gi' tomb(17th Century) of Joseon dynasty$(1392{\sim}1910)$ and to focus on the development of conservation skill to prevent flakings of gold leaves in gilt paper strips. Up to the present, in case of golden decorations of costumes excavated from tombs of Joseon dynasty, some of gold leaves in gilt paper strips of costumes were flaked away by deterioration of adhesives in tombs. However, most of gold leaves were flaked away and totally lost by wet cleaning for eliminating contaminants after excavation. In order to prevent flaking, preliminary experiments for re-adhesion of gold leaves have been carried out. Firstly, simulation was performed using gold leaf which was available in the market. Adhesives used in this research were water-soluble adhesives(hide glue(cow, rabbit), glue made from air bladders of sciaenoid fish and Primal AC-3444 of acrylic emulsion) and solvent-soluble adhesives(acrylic adhesive Paraloid B-67 and B-72). Because of difficulty in wetting and spreading of adhesive solutions into the interface between gold leaf and Korean paper, water-soluble adhesives were not proper for adhesion of gold leaf and Korean paper. Solvent-soluble adhesives were easily infiltrated into interface between gold leaf and Korean paper and the adhesive force was also satisfied. From this result, the researchers chose more flexible Paraloid B-72$(Tg\;40^{\circ}C)$ 1% solution than Paraloid B-67$(Tg\;50^{\circ}C)$ for adhesion of gold leaf and Korean paper. Secondly, using Paraloid B-72 1% solution, the estimations of re-adhesions of gold leaves in gilt paper strips of Jeogori were carried out. When Paraloid B-72 1% solution was injected three times into the interface between gold leaf and Korean paper, the re-adhesion was most effective. On the basis of the results in these preliminary experiments, re-adhesions of gold leaves in gilt paper strips of Chima and Jeogori were carried out on condition of three times injections of Paraloid B-72 1% solution before wet cleaning. After wet cleaning, the most of the gold leaves were survived, which was confirmed by both the examination with the naked eye and the microscopic examination.

Net Mouth Automatic Opening Strips of Towed Net (인망그물의 자동전개깃판에 관하여)

  • 장지원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.1
    • /
    • pp.17-21
    • /
    • 1988
  • To the purpose of keeping net mouth of seine with bag open in the seining operation a novel method was devised and tested with model gear that double textile strips were fixed at both side edges of bag net mouth as sheering devices. The angles of attack of inner and outer strips were the 40 in degrees by adjusting rigging. In seining operation current that flowed between the double strips and generated side force on the strips sheered and opened the net mouth automatically. This paper described dynamic characteristics of the sheering strips and its automatic opening function of net mouth.

  • PDF

Vision-Based Camber and Optimal Cutting Line Detection Algorithm for Hot-Rolling Process (열연 공정에서의 영상을 이용한 캠버 및 최적 절단선 검출 알고리즘)

  • Kong, Nam-Wong;Moon, Jung-Hye;Park, Poo-Gyeon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.155-156
    • /
    • 2007
  • This paper presents the vision-based camber and optimal cutting line detection algorithm for hot-rolling process. It is important to measure the camber of head and tail part of strips because many problems are caused by the camber in the hot-rolling process. The hot-rolling process has time constraints. The camber detection algorithm of head and tail parts requires fast and less complex for satisfying time constraints. The proposed algorithm consists of two parts: measurement of the camber in the head and tail part of strips and decision part of the optimal cutting line of hot-rolled strip. First, we obtain the camber value of the strip from the difference between the real center line and the center line of head, tail part. Second, the head and tail part of strips isn't suitable for strips connections. Therefore, the cutting process is needed in the hot-rolling process. The optimal cutting line is determined by the head and tail images obtained from cameras. The algorithm is applied into the vision system with two area cameras, Matrox image processing board and host PC for verification.

  • PDF

Improvement Scheme of Airborne LiDAR Strip Adjustment

  • Lee, Dae Geon;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.355-369
    • /
    • 2018
  • LiDAR (Light Detection And Ranging) strip adjustment is process to improve geo-referencing of the ALS (Airborne Laser Scanner) strips that leads to seamless LiDAR data. Multiple strips are required to collect data over the large areas, thus the strips are overlapped in order to ensure data continuity. The LSA (LiDAR Strip Adjustment) consists of identifying corresponding features and minimizing discrepancies in the overlapping strips. The corresponding features are utilized as control features to estimate transformation parameters. This paper applied SURF (Speeded Up Robust Feature) to identify corresponding features. To improve determination of the corresponding feature, false matching points were removed by applying three schemes: (1) minimizing distance of the SURF feature vectors, (2) selecting reliable matching feature with high cross-correlation, and (3) reflecting geometric characteristics of the matching pattern. In the strip adjustment procedure, corresponding points having large residuals were removed iteratively that could achieve improvement of accuracy of the LSA eventually. Only a few iterations were required to reach reasonably high accuracy. The experiments with simulated and real data show that the proposed method is practical and effective to airborne LSA. At least 80 % accuracy improvement was achieved in terms of RMSE (Root Mean Square Error) after applying the proposed schemes.

Methods of punching shear strength analysis of reinforced concrete flat plates-A comparative study

  • Loo, Y.C.;Chiang, C.L.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.75-86
    • /
    • 1993
  • The punching shear strength of concrete flat plates is one of the topics of intensive research in recent years by various concrete structures researchers. This paper reviews four current methods of analysing the punching shear strength at the corner-and edge-column positions of reinforced concrete flat plates. They include those recommended in the Australian Standard AS3600-1988, the American Concrete Institute ACI318-89 and the British Standard on Concrete Practices (BS8110) as well as the approach developed at the University of Wollongong, Australia. Based on half-scale model test results, a comparative study of these four analysis methods is made with regard to their limitation, accuracy and reliability. It is found that the Wollongong approach in general gives the best performance in predicting the punching shear strength of flat plates with torsion strips and those with spandrel beams. The Australian Standard procedure performs just as satisfactorily for flat plates with torsion strips but tends to be unsafe for those with spandrel beams. Both the ACI and the British methods are applicable only to flat plates with torsion strips; they also tend to give unsafe predictions for the punching shear strength.

Optimal sensor placement of retrofitted concrete slabs with nanoparticle strips using novel DECOMAC approach

  • Ali Faghfouri;Hamidreza Vosoughifar;Seyedehzeinab Hosseininejad
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.545-559
    • /
    • 2023
  • Nanoparticle strips (NPS) are widely used as external reinforcers for two-way reinforced concrete slabs. However, the Structural Health Monitoring (SHM) of these slabs is a very important issue and was evaluated in this study. This study has been done analytically and numerically to optimize the placement of sensors. The properties of slabs and carbon nanotubes as composite sheets were considered isotopic and orthotropic, respectively. The nonlinear Finite Element Method (FEM) approach and suitable optimal placement of sensor approach were developed as a new MATLAB toolbox called DECOMAC by the authors of this paper. The Suitable multi-objective function was considered in optimized processes based on distributed ECOMAC method. Some common concrete slabs in construction with different aspect ratios were considered as case studies. The dimension and distance of nano strips in retrofitting process were selected according to building codes. The results of Optimal Sensor Placement (OSP) by DECOMAC algorithm on un-retrofitted and retrofitted slabs were compared. The statistical analysis according to the Mann-Whitney criteria shows that there is a significant difference between them (mean P-value = 0.61).

Effective Reduction of Horizontal Error in Laser Scanning Information by Strip-Wise Least Squares Adjustments

  • Lee, Byoung-Kil;Yu, Ki-Yun;Pyeon, Moo-Wook
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.109-120
    • /
    • 2003
  • Though the airborne laser scanning (ALS) technique is becoming more popular in many applications, horizontal accuracy of points scanned by the ALS is not yet satisfactory when compared with the accuracy achieved for vertical positions. One of the major reasons is the drift that occurs in the inertial measurement unit (IMU) during the scanning. This paper presents an algorithm that adjusts for the error that is introduced mainly by the drift of the IMU that renders systematic differences between strips on the same area. For this, we set up an observation equation for strip-wise adjustments and completed it with tie point and control point coordinates derived from the scanned strips and information from aerial photos. To effectively capture the tie points, we developed a set of procedures that constructs a digital surface model (DSM) with breaklines and then performed feature-based matching on strips resulting in a set of reliable tie points. Solving the observation equations by the least squares method produced a set of affine transformation equations with 6 parameters that we used to transform the strips for adjusting the horizontal error. Experimental results after evaluation of the accuracy showed a root mean squared error (RMSE) of the adjusted strip points of 0.27 m, which is significant considering the RMSE before adjustment was 0.77 m.

  • PDF

Accident Reduction Effect of Rumble Strips by Highway Geometric Characteristics (도로 선형특성에 따른 럼블스트립의 교통사고 감소효과)

  • Oh, Heung-Un
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.289-294
    • /
    • 2010
  • It is well known that rumble strips contribute to reduce traffic accidents. The present paper provides the reduction effect of traffic accidents under specific highway geometrics after rumble strip installation. Traffic accidents on freeway sections before and after rumble strip installation are compared when conditions of the highway geometric characteristics such as horizontal, vertical geometrics are given. It is shown that rumble strips are effective under highway geometric conditions of down slopes or right curvatures. It is also shown that rumble strips are still effective with shorter length of installation.

A numerical study on behavior of CFRP strengthened shear wall with opening

  • Behfarnia, Kiachehr;Shirneshan, Ahmadreza
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 2017
  • Concrete shear walls are one of the major structural lateral resisting systems in buildings. In some cases, due to the change in the occupancy of the structure or functional requirements like architectural and even mechanical ones, openings need to be provided and installed in structural walls after their construction. Providing these openings may significantly influence the structural behavior of the constructed wall. This paper considers the results of a nonlinear finite element analysis of shear walls with opening strengthened by carbon fiber reinforced polymer (CFRP) strips with different configurations. Details of bond-slip constitutive model of link elements to simulate the connections of FRP strips to concrete surface is presented. The proposed model in this research has been validated using experimental results available in the literature. The results indicated that the proposed configuration of CFRP strips significantly improved the lateral resistance and deformation capacity of the shear walls with opening.