• Title/Summary/Keyword: stretching functions

Search Result 46, Processing Time 0.02 seconds

Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position

  • Hachemi, Houari;Bousahla, Abdelmoumen Anis;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.51-64
    • /
    • 2021
  • This paper presents a high-order shear and normal deformation theory for the bending of FGM plates. The number of unknowns and governing equations of the present theory is reduced, and hence makes it simple to use. Unlike any other theory, the number of unknown functions involved in displacement field is only four, as against five or more in the case of other shear and normal deformation theories. Based on the novel shear and normal deformation theory, the position of neutral surface is determined and the governing equilibrium equations based on neutral surface are derived. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. Navier-type analytical solution is obtained for functionally graded plate subjected to transverse load for simply supported boundary conditions. The accuracy of the present theory is verified by comparing the obtained results with other quasi-3D higher-order theories reported in the literature. Other numerical examples are also presented to show the influences of the volume fraction distribution, geometrical parameters and power law index on the bending responses of the FGM plates are studied.

A quasi 3D solution for thermodynamic response of FG sandwich plates lying on variable elastic foundation with arbitrary boundary conditions

  • Bouiadjra, Rabbab Bachir;Mahmoudi, Abdelkader;Sekkal, Mohamed;Benyoucef, Samir;Selim, Mahmoud M.;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.873-886
    • /
    • 2021
  • In this paper, an analytical solution for thermodynamic response of functionally graded (FG) sandwich plates resting on variable elastic foundation is performed by using a quasi 3D shear deformation plate theory. The displacement field used in the present study contains undetermined integral terms and involves only four unknown functions with including stretching effect. The FG sandwich plate is considered to be subject to a time harmonic sinusoidal temperature field across its thickness with any combined boundary conditions. Equations of motion are derived from Hamilton's principle. The numerical results are compared with the existing results of quasi-3D shear deformation theories and an excellent agreement is observed. Several numerical examples for fundamental frequency, deflection, stress and variable elastic foundation parameter's analysis of FG sandwich plates are presented and discussed considering different material gradients, layer thickness ratios, thickness-to-length ratios and boundary conditions. The results of the present study reveal that the nature of the elastic foundation, the boundary conditions and the thermodynamic loading affect the response of the FG plate especially in the case of a thick plate.

Effects of a Combination of Scapular Stabilization and Thoracic Extension Exercises on Respiration, Pain, Craniovertebral Angle and Cervical Range of Motion in Elementary School Teachers with a Forward Head Posture: A Randomized Controlled Trial

  • Kang, Na-Yeon;Kim, Kyoung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.2
    • /
    • pp.29-40
    • /
    • 2022
  • PURPOSE: This study examined the effects of an exercise program for the thoracic spine and scapula rather than the neck, which is the primary site of pain. METHODS: Thirty-two elementary school teachers with a forward head posture (FHP) were assigned randomly to either the experimental group (n = 16) or the control group (n = 16). The experimental group performed scapular stabilization exercise (SSE) and thoracic extension exercise (TEE), and the control group performed cervical self-myofascial release exercise and stretching exercise. The pulmonary functions, pain, craniovertebral angle (CVA), and cervical range of motion (CROM) were measured before the intervention and six weeks after. RESULTS: The within-group comparisons showed that the VAS and CROM (except for extension) in both groups were significantly different before and after the intervention (p < .05). The changes in the maximum inspiratory pressure (MIP), maximum expiratory pressure (MEP), forced vital capacity (FVC), forced expiratory volume at 1 sec (FEV1), and CVA were significant only in the experimental group (p < .05). The between-group comparisons showed a significant difference in the FVC, FEV1, VAS, CVA, and left lateral flexion (p < .05). CONCLUSION: The combination of SSE and TEE in the experimental group was more effective in improving the FHP and breathing ability. Moreover, the experimental group and control combination appeared to be effective in reducing pain and improving the CROM. The combination of SSE and TEE, which are exercises that do not target the cervical spine directly, was effective in improving the posture, respiration, neck pain, and CROM in elementary school teachers with FHP.

A novel hyperbolic integral-Quasi-3D theory for flexural response of laminated composite plates

  • Ahmed Frih;Fouad Bourada;Abdelhakim Kaci;Mohammed Bouremana;Abdelouahed Tounsi;Mohammed A. Al-Osta;Khaled Mohamed Khedher;Mohamed Abdelaziz Salem
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.233-250
    • /
    • 2023
  • This paper investigates the flexural analysis of isotropic, transversely isotropic, and laminated composite plates using a new higher-order normal and shear deformation theory. In the present theory, only five unknown functions are involved compared to six or more unknowns used in the other similar theories. The developed theory does not need a shear correction factor. It can satisfy the zero traction boundary conditions on the top and the bottom surfaces of the plate as well as account for sufficient distribution of the transverse shear strains. The thickness stretching effect is considered in the computation. A simply supported was considered on all edges of the plate. The plate is subjected to uniform and sinusoidal distributed load in the static analysis. Laminated composite, isotropic, and transversely isotropic plates are considered. The governing equations are obtained utilizing the virtual work principle. The differential equations are solved via Navier's procedure. The results obtained from the developed theory are compared with other higher-order theories considered in the previous studies and 3D elasticity solutions. The results showed that the proposed theory accurately and effectively predicts the bidirectional bending responses of laminated composite plates. Several parametric studies are presented to illustrate the various parameters influencing the static response of the laminated composite plates.

Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai;Mouloud Dahmane
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.83-96
    • /
    • 2024
  • This paper suggests an analytical approach to investigate the free vibration and stability of functionally graded (FG) beams with both perfect and imperfect characteristics using a quasi-3D higher-order shear deformation theory (HSDT) with stretching effect. The study specifically focuses on FG beams resting on variable elastic foundations. In contrast to other shear deformation theories, this particular theory employs only four unknown functions instead of five. Moreover, this theory satisfies the boundary conditions of zero tension on the beam surfaces and facilitates hyperbolic distributions of transverse shear stresses without the necessity of shear correction factors. The elastic medium in consideration assumes the presence of two parameters, specifically Winkler-Pasternak foundations. The Winkler parameter exhibits variable variations in the longitudinal direction, including linear, parabolic, sinusoidal, cosine, exponential, and uniform, while the Pasternak parameter remains constant. The effective material characteristics of the functionally graded (FG) beam are assumed to follow a straightforward power-law distribution along the thickness direction. Additionally, the investigation of porosity includes the consideration of four different types of porosity distribution patterns, allowing for a comprehensive examination of its influence on the behavior of the beam. Using the virtual work principle, equations of motion are derived and solved analytically using Navier's method for simply supported FG beams. The accuracy is verified through comparisons with literature results. Parametric studies explore the impact of different parameters on free vibration and buckling behavior, demonstrating the theory's correctness and simplicity.

Continuum Based Plasticity Models for Cubic Symmetry Lattice Materials Under Multi-Surface Loading (다중면 하중하에 정방향 대층구조를 가진 격자재료의 연속적인 소성모델)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.1-11
    • /
    • 2011
  • The typical truss-lattice material successively packed by repeated cubic symmetric unit cells consists of sub-elements (SE) proposed in this study. The representative continuum model for this truss-lattice material such as the effective strain and stress relationship can be formulated by the homogenization procedure based on the notation of averaged mechanical properties. The volume fractions of micro-scale struts have a significant influence on the effective strength as well as the relative density in the lattice plate with replicable unit cell structures. Most of the strength contribution in the lattice material is induced by axial stiffness under uniform stretching or compression responses. Therefore, continuum based constitutive models composed of homogenized member stiffness include these mechanical characteristics with respect to strength, internal stress state, material density based on the volume fraction and even failure modes. It can be also recognized that the stress state of micro-scale struts is directly associated with the continuum constitutive model. The plastic flow at the micro-scale stress can extend the envelope of the analytical stress function on the surface of macro-scale stress derived from homogenized constitutive equations. The main focus of this study is to investigate the basic topology of unit cell structures with the cubic symmetric system and to formulate the plastic models to predict pressure dependent macro-scale stress surface functions.