Browse > Article
http://dx.doi.org/10.12989/scs.2021.41.6.873

A quasi 3D solution for thermodynamic response of FG sandwich plates lying on variable elastic foundation with arbitrary boundary conditions  

Bouiadjra, Rabbab Bachir (Department of Civil Engineering, University Mustapha Stambouli of Mascara)
Mahmoudi, Abdelkader (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Sekkal, Mohamed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Benyoucef, Samir (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Selim, Mahmoud M. (Department of Mathematics, Al-Aflaj College of Science and Humanities, Prince Sattam bin Abdulaziz University)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Publication Information
Steel and Composite Structures / v.41, no.6, 2021 , pp. 873-886 More about this Journal
Abstract
In this paper, an analytical solution for thermodynamic response of functionally graded (FG) sandwich plates resting on variable elastic foundation is performed by using a quasi 3D shear deformation plate theory. The displacement field used in the present study contains undetermined integral terms and involves only four unknown functions with including stretching effect. The FG sandwich plate is considered to be subject to a time harmonic sinusoidal temperature field across its thickness with any combined boundary conditions. Equations of motion are derived from Hamilton's principle. The numerical results are compared with the existing results of quasi-3D shear deformation theories and an excellent agreement is observed. Several numerical examples for fundamental frequency, deflection, stress and variable elastic foundation parameter's analysis of FG sandwich plates are presented and discussed considering different material gradients, layer thickness ratios, thickness-to-length ratios and boundary conditions. The results of the present study reveal that the nature of the elastic foundation, the boundary conditions and the thermodynamic loading affect the response of the FG plate especially in the case of a thick plate.
Keywords
different boundary conditions; FG thick sandwich plates; Quasi-3D solution; thermodynamic loading; variable elastic foundation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021b), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.   DOI
2 Meksi, R, Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.   DOI
3 Nguyen, T.K., Vo, T.P. and Thai, H.T. (2014a), "Vibration and buckling analysis of functionally graded sandwich plates with improved transverse shear stiffness based on the first-order shear deformation theory", Proc. IMechE Part C: J. Mech. Eng. Sci., 228(12), 2110-2131. https://doi.org/10.1177/0954406213516088.   DOI
4 Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.   DOI
5 Ozutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013.   DOI
6 Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321, 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.   DOI
7 Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.   DOI
8 Sedighi, H.M. (2020), "Divergence and flutter instability of magneto thermo elastic C BN hetero nanotubes conveying fluid", Acta Mechanica Sinica, 36(2), 381-396. https://doi.org/10.1007/s10409-019-00924-4.   DOI
9 Taibi, F.Z, Benyoucef, S., Tounsi, A., Bachir Bouiadjra, R., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 17(2), 99-129. https://doi.org/10.1177/1099636214554904.   DOI
10 Tran, T.T., Pham, Q.H., Nguyen-Thoi, T. and Tran, TV., (2020), "Dynamic analysis of sandwich auxetic honeycomb plates subjected to moving oscillator load on elastic foundation", Adv. Mater. Sci. Eng., 2020, 6309130. https://doi.org/10.1155/2020/6309130.   DOI
11 Tossapanon, P. and Wattanasakulpong, N. (2020), "Flexural vibration analysis of functionally graded sandwich plates resting on elastic foundation with arbitrary boundary conditions: Chebyshev collocation technique", Sandw. Struct.Mater.,22(2), 156-189. https://doi.org/10.1177/1099636217736003.   DOI
12 Vaghefi, R. (2020), "Thermo-elastoplastic analysis of functionally graded sandwich plates using a three-dimensional meshless model", Compos. Struct, 242, 112144. https://doi.org/10.1016/j.compstruct.2020.112144.   DOI
13 Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.   DOI
14 Yaylaci, U.E., Yaylaci, M., Olmez, H. and Birinci, A., (2020). "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.   DOI
15 Yaylaci, M., Yayli, M., Yaylaci U.E., Olmez, H. and Birinci A. (2021c), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.   DOI
16 Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Thermal Stresses, 1-19. http://ddoi.org/10.1080/01495739.2019.1673687.   DOI
17 Kaur, H. and Lata, P. (2020), "Effect of thermal conductivity on isotropic modified couple stress thermoelastic medium with two temperatures", Steel Compos. Struct., 34(2), 309-319. http://dx.doi.org/10.12989/scs.2020.34.2.309.   DOI
18 Nguyen, V.H., Nguyen, T.K., Thai, H.T. and Vo, T.P. (2014), "A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates", Compos. Part B, 66, 233-246. https://doi.org/10.1016/j.compositesb.2014.05.012.   DOI
19 Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241   DOI
20 Tounsi, A., Ait Atmane, H., Khiloun, M., Sekkal, M., Taleb, O. and Bousahla, A.A. (2019), "On buckling behavior of thick advanced composite sandwich plates", Compos. Mater. Eng., 1(1), 1-19. https://doi.org/10.12989/cme.2019.1.1.001.   DOI
21 Fu, T., Chen, Z., Yu, H., Wang, Z. and Liu, X., (2020), "Free vibration of functionally graded sandwich plates based on nth-order shear deformation theory via differential quadrature method", J. Sandwich Struct. Mater., 22(5), 1660-1680. https://doi.org/10.1177/1099636218809451.   DOI
22 Ibrahim Majeed, W and Assad Ghani, R. (2017), "Free vibration analysis of laminated composite plates with general elastic boundary supports", J. Eng., 23(4),100-124.
23 Sobhy, M. and Alotebi, M.S. (2018), "Transient hygrothermal analysis of FG sandwich plates lying on a visco-pasternak foundation via a simple and accurate plate theory", Arab. J. Sci. Eng., 43, 5423-5437. https://doi.org/10.1007/s13369-018-3142-1.   DOI
24 Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated 1. composite plates", Adv. Nano Res., 7(5), 337-349. http://dx.doi.org/10.12989/anr.2019.7.5.337.   DOI
25 Shariati, A., Jung, D., W., Sedighi, H.M., Zur, K., K. and Habibi, M. (2020), "On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams", Mater, 13(7), 1707. http://.doi.org/10.3390/ma13071707.   DOI
26 Singh, S.J. and Harsha, S.P. (2019), "Nonlinear dynamic analysis of sandwich S-FGM plate resting on pasternak foundation under thermal environment", Europ. J. Mech. - A/Solids, 76, 155-179. https://doi.org/10.1016/j.euromechsol.2019.04.005.   DOI
27 Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.   DOI
28 Sobhy, M. (2015), "Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations", J. Appl. Mech., 7(6), 1550082. https://doi.org/10.1142/S1758825115500829.   DOI
29 Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/CAC.2020.26.1.053.   DOI
30 Vinh, P.H. and Huy, L.Q. (2021), "Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory", Defence Technol. https://doi.org/10.1016/j.dt.2021.03.006.   DOI
31 Li, H., Pang, F., Wang, X. and Li, S. (2017), "Benhmark solution for free vibration of moderately thick functionally graded sandwich sector plates on two-parameter elastic foundation with general boundary conditions", Shock Vib., 2017, 4018629, https://doi.org/10.1155/2017/4018629.   DOI
32 Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.   DOI
33 Hammed, M.B., and Ibrahim Majeed, W. (2020), "Thermal buckling analysis of laminated plates with general elastic boundary conditions", J. Eng., 26(3), 1-17. https://doi.org/10.31026/j.eng.2020.03.01.   DOI
34 Kamarian, S., Yas, M.H. and Pourasghar, A. (2013), "Free vibration analysis of three-parameter functionally graded material sandwich plates resting on Pasternak foundations", J. Sand. Struct. Mat. 15(3), 292-308. https://doi.org/10.1177/1099636213487363.   DOI
35 Liu, M., Cheng, Y., Liu, J., (2015), "High-order free vibration analysis of sandwich plates with both functionally graded face sheets and functionally graded flexible core", Compos. Part B, 72, 97-107. https://doi.org/10.1016/j.compositesb.2014.11.037.   DOI
36 Adiyaman, G., Yaylaci, M., Birinci, A., (2015), "Analytical and finite element solution of a receding contact problem", Structural Engineering and Mechanics, 54(1), 69-85., Doi: 10.12989/sem.2015.54.1.069.   DOI
37 Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sand. Struct. Mat., 15(6), 671-703. https://doi.org/10.1177/1099636213498888.   DOI
38 Daikh., A.A. and Zenkour., A.M. (2020), "Bending of functionally graded sandwich nanoplates resting on pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6, 1245-1259. https://doi.org/10.22055/JACM.2020.33136.2166.   DOI
39 Abouelregal, A.A., Mohammed, W.W. and Sedighi, H.M. (2021), "Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags", Arch. Appl. Mech. 91(5), 2127-2142. https://doi.org/10.1007/s00419-020-01873-2   DOI
40 Achouri, F., Benyoucef, S., Bourada, F, Bachir Bouiadjra, R. and Tounsi, A. (2019), "Robust quasi 3D computational model for mechanical response of FG thick sandwich plate", Struct. Eng. Mech., 70(5), 571-589. https://doi.org/10.12989/sem.2019.70.5.571.   DOI
41 Ait Amar M.M., Hadj Henni, A. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sand. Struct. Mat., 16, 293-318. https://doi.org/10.1177/1099636214526852.   DOI
42 Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B, 83, 203-215.http://dx.doi.org/10.1016/j.compositesb.2015.08.043.   DOI
43 Akbas, S.D. (2020), "Dynamic responses of laminated beams under a moving load in thermal environment", Steel Compos. Struct., 35(6), 729-737. https://doi.org/10.12989/SCS.2020.35.6.729.   DOI
44 Madenci, E. (2021b), "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. http://dx.doi.org/10.12989/anr.2021.11.2.157.   DOI
45 Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. http://doi.org/10.12989/sem.2016.57.6.1143.   DOI
46 Abazid, M.A., Al otebi, MS. and Sobhy, M. (2018), "A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation", Struct. Eng. Mech., 67(3), 219-232. https://doi.org/10.12989/sem.2018.67.3.219.   DOI
47 Demirhan, P.A. and Taskin, V. (2017), "Levy solution for bending analysis of functionally graded sandwich plates based on four variable plate theory", Compos. Struct., 177, 80-95. https://doi.org/10.1016/j.compstruct.2017.06.048.   DOI
48 Daouadji, T.H., and Adim, B. (2017), "Mechanical behaviour of FGM sandwich plates using a quasi 3D higher order shear and normal deformation theory", Struct. Eng. Mech. J. 61(1), 49-43. https://doi.org/10.12989/sem.2017.61.1.049.   DOI
49 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. http://doi.org/10.12989/sem.2019.69.4.427.   DOI
50 Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. http://doi.org/10.12989/sem.2020.73.1.097.   DOI
51 Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.   DOI
52 Mantari, J.L. and Soares, C.G. (2014a), "A trigonometric plate theory with 5-unknowns and stretching effect for advanced composite plates", Compos. Struct., 107, 396-405. https://doi.org/10.1016/j.compstruct.2013.07.046.   DOI
53 Mantari, J.L. and Granados, E.V. (2015), "A refined FSDT for the static analysis of functionally graded sandwich plates", Thin-Walled Struct., 90, 150-158. https://doi.org/10.1016/j.tws.2015.01.015.   DOI
54 Alibeigloo, A. and Alizadeh, M. (2015), "Static and free vibration analyses of functionally graded sandwich plates using state space differential quadrature method", Eur. J. Mech. A-Solids, 54, 252-266. https://doi.org/10.1016/j.euromechsol.2015.06.011.   DOI
55 Radwan, A.F. (2019), "Effects of non-linear hygrothermal conditions on the buckling of FG sandwich plates resting on elastic foundations using a hyperbolic shear deformation theory", J. Sandw. Struct. Mater., 21(1), 289-319. https://doi.org/10.1177/1099636217693557.   DOI
56 Yaylaci M., Adiyaman E., Oner E. and Birinci A. (2021a). "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. http://dx.doi.org/10.12989/cac.2021.27.3.199.   DOI
57 Abdul Kareem Abed, Z. and Ibraheem Majeed, W. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.   DOI
58 Madeh, R.A. and Ibraheem Majeed, W. (2021), "Effect of boundary conditions on thermal buckling of laminated composite shallow shell", Mater. Today: Proc., 42, 2397-2404. https://doi.org/10.1016/j.matpr.2020.12.501.   DOI
59 Ali Rachedi, M., Benyoucef, S., Bouhadra, A. Sekkal, M., Bachir Bouiadjra, R. and Benachour, A., (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng. Int. J., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.   DOI
60 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.   DOI
61 Katariya, P. V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. https://doi.org/10.12989/SCS.2020.34.2.279.   DOI
62 Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B, 96, 136-152. http://dx.doi.org/10.1016/j.compositesb.2016.04.035.   DOI
63 Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. http://dx.doi.org/10.12989/sem.2020.76.3.325.   DOI
64 Yang, C., Jin, G., Ye, X., and Liu, Z. (2016), "A modified Fourier-Ritz solution for vibration and damping analysis of sandwich plates with viscoelastic and functionally graded materials", Int. J. Mech. Sci., 106, 1-18. https://doi.org/10.1016/j.ijmecsci.2015.11.031.   DOI
65 Younesian, D., Hosseinkhani, A., Askari, H. and Esmailzadeh, E. (2019), "Elastic and viscoelastic foundations: a review on linear and nonlinear vibration modeling and applications", Nonlinear Dyn., 97, 853-895. https://doi.org/10.1007/s11071-019-04977-9.   DOI
66 Zouatnia, N. and Hadji, L. (2019), "Static and free vibration behavior of functionally graded sandwich plates using a simple higher order shear deformation theory", Adv. Mater. Res. Int. J., 8(4), 313-335. https://doi.org/10.12989/amr.2019.8.4.313.   DOI
67 Ibrahim Majeed, W. and Abdul Kareem Abed, Z. (2019), "Buckling and pre stressed dynamics analysis of laminated composite plate with different boundary conditions", Al-Khwarizmi Eng. J., 15(1), 46-55. https://doi.org/10.22153/kej.2019.07.002.   DOI
68 Hammed, M.B., and Ibrahim Majeed, W. (2019), "Free vibration analysis of laminated composite plates with general boundary elastic supports under initial thermal load", Al-Khwarizmi Eng. J., 15(4), 23- 32. https://doi.org/10.22153/kej.2019.09.004.   DOI
69 Li, D., Deng, Z., Chen, G., Xiao, H. and Zhu, L., (2017), "Thermomechanical bending analysis of sandwich plates with both functionally graded face sheets and functionally graded core", Compos. Struct., 169, 29-41. http://dx.doi.org/10.1016/j.compstruct.2017.01.026.   DOI
70 Mekerbi, M., Benyoucef, S., Mahmoudi, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Thermodynamic behavior of functionally graded sandwich plates resting on different elastic foundation and with various boundary conditions", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636219851281.   DOI
71 Mantari, J.L. and Soares, C.G. (2014b), "Four-unknown quasi-3D shear deformation theory for advanced composite plates", Compos. Struct., 109, 231-239. https://doi.org/10.1016/j.compstruct.2013.10.047.   DOI
72 Lyashenko, I.A., Borysiuk, V.N. and Popov, V.L. (2020), "Dynamical model of the asymmetric actuator of directional motion based on power-law graded materials", Facta Universitatis, Series: Mech. Eng., 18(2), 245-254. http://dx.doi.org/10.22190/FUME200129020L.   DOI
73 Madenci, E., (2021a), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.   DOI
74 Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations", J. Sandw.Struct.Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.   DOI
75 Sobhy, M. and Zenkour, A.M. (2015), "Thermodynamical bending of FGM sandwich plates resting on Pasternak's elastic foundations", Adv. Appl. Math. Mech., 7, 116-134. https://doi.org/10.4208/aamm.2013.m143.   DOI