• Title/Summary/Keyword: stretchability

Search Result 64, Processing Time 0.02 seconds

Effects of Knit Fabric Layering and Flat Seam Direction on Stretchability and Clothing Pressure

  • Lee, Hyojeong;Eom, Ran-i;Park, Sunhee;Lee, Yejin
    • Journal of Korean Living Environment System
    • /
    • v.24 no.4
    • /
    • pp.533-540
    • /
    • 2017
  • This study analyzes the stretchability and clothing pressure of fabrics made from stretchy knit materials, and uses the baseline data to develop various functional clothing made from stretchy knit fabrics. To observe the changes in the stretchability and clothing pressure, we observed the compatibility of the two materials (tricot and power-net), presence of flat seam, fabric layering, and flat seam direction as key variables. A standard test method for stretch properties (ASTM D2594) was used for measuring the stretchability of the material. Clothing pressure measurements were analyzed in terms of the mean and standard deviation values, and the correlation of the stretchability. In the case of tricot, the presence of flat seam increased the stretchability of the fabric regardless of the fabric layering. However, when tricot and the less stretchable power-net were combined, the presence of flat seam did not increase the stretchability. Flat seam did not interfere with or limit the stretchability of the fabric, but they did increase the clothing pressure at the seam. The stretchability had a negative correlation with the clothing pressure except along the flat seam.

The association of follicular fluid volume with human oolemma stretchability during intracytoplasmic sperm injection

  • Inoue, Taketo;Yamashita, Yoshiki;Tsujimoto, Yoshiko;Yamamoto, Shuji;Taguchi, Sayumi;Hirao, Kayoko;Uemura, Mikiko;Ikawa, Kayoe;Miyazaki, Kazunori
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.44 no.3
    • /
    • pp.126-131
    • /
    • 2017
  • Objective: Oocyte degeneration often occurs after intracytoplasmic sperm injection (ICSI), and the risk factor is low-quality oocytes. The follicular fluid (FF) provides a crucial microenvironment for oocyte development. We investigated the relationships between the FF volume aspirated from individual follicles and oocyte retrieval, oocyte maturity, oolemma stretchability, fertilization, and development. Methods: This retrospective study included data obtained from 229 ICSI cycles. Ovarian stimulation was performed according to a gonadotropin-releasing hormone antagonist protocol. Each follicle was individually aspirated and divided into six groups according to FF volume ( < 1.0, 1.0 to < 2.0, 2.0 to < 3.0, 3.0 to < 4.0, 4.0 to < 5.0, and ${\geq}5.0mL$). Oolemma stretchability during ICSI was evaluated using a mechanical stimulus for oolemma penetration, that is, the stretchability was assessed by oolemma penetration with aspiration (high stretchability) or without aspiration (low stretchability). Results: Oocyte retrieval rates were significantly lower in the < 1.0 mL group than in the ${\geq}1.0mL$ groups (46.0% [86/187] vs. 67.5%-74.3% [172/255 to 124/167], respectively; p< 0.01). Low oolemma stretchability was significantly more common in the < 1.0 mL group than in the ${\geq}1.0mL$ groups during ICSI (22.0% [13/59] vs. 5.8%-9.4% [6/104 to 13/139], respectively; p= 0.018). There was a relationship between FF volume and oolemma stretchability. However, there were no significant differences in the rates of fertilization, cleavage, ${\geq}7$ cells at day 3, and blastocyst development among all groups. Conclusion: FF volume is potentially associated with the stretchability of metaphase II oolemma during ICSI. Regarding oolemma stretchability, ensuring a uniform follicular size during ovarian stimulation is crucial to obtain good-quality oocytes.

Engineered Stretchability of Conformal Parylene Thin-film On-skin Electronics

  • Jungho Lee;Gaeun Yun;Juhyeong Jeon;Phuong Thao Le;Seung Whan Kim;Geunbae Lim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.335-339
    • /
    • 2023
  • Skin-compatible electronics have evolved to achieve both conformality and stretchability for stable contact with deformable biological skin. While existing research has largely concentrated on alternative materials, the potential of Parylene-based thin-film electrodes for stretchable on-skin applications remains relatively untapped. This study proposes an engineering strategy to achieve stretchability using the Parylene thin-film electrode. Unlike the conventional Parylene thin-film electrode, we introduce morphological adaptability via controlled microscale slits in the Parylene electrode structure. The slits-containing device enables unprecedented stretchability while maintaining critical electrical insulation properties during mechanical deformation. Finally, the demonstration on human skin shows the mechanical adaptability of these Parylene-based bioelectrodes while their electrical characteristics remain stable during various stretching conditions. Owing to the ultra-thinness of the Parylene coating, the wearable bioelectrode not only achieves stretchability but also conforms to the skin. Our findings broaden the practical use of Parylene thin-film bioelectrodes.

Entangled-Mesh Graphene for Highly Stretchable Electronics

  • Han, Jae-Hyeon;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.351.1-351.1
    • /
    • 2016
  • While conventional electronic devices have been fabricated on the rigid and brittle Si based wafer as a semiconducting substrate, future devices are increasingly finding applications where flexibility and stretchability are further integrated to enable emerging and wearable devices. To achieve high flexibility and stretchability, various approaches are investigated such as polymer based conducting composite, thin metal films on the polymer substrate, and structural modifications for stretchable electronics. In spite of many efforts, it is still a challenge to identify a solution that offers both high stretchability and superior electrical properties. In this paper, we introduce a highly stretchable entangled-mesh graphene showing a potential to address such requirements as stretchability and good electrical performance. Entangle-mesh graphene was synthesized by CVD graphene on the Cu foil. To analyze the mechanical properties of entangled-mesh graphene, endurance and stretching tester have been used.

  • PDF

A Study on the Improvement of Stretchability of Mozzarella Cheese (모짜렐라 치즈의 신전성 향상에 관한 연구)

  • 박희경;최수임;허태련
    • Food Science of Animal Resources
    • /
    • v.24 no.2
    • /
    • pp.156-163
    • /
    • 2004
  • This study was carried out to investigate the improvement of stretchability in Mozzarella cheese based on the influence of various factors such as starter type, fat content, salt content and stretching temperature. To do this study, stretchability, meltability, fat leakage and the change of soluble nitrogen compound were measured during storage of the Mozzarella cheese at 4$^{\circ}C$ for 10 weeks. When L bulgaricus starter was added, stretchability of the cheese was excellent and cheese manufactured with starter of L bulgaricus and L. bulgaricus : Str. thermophilus = 1:2 improved meltability because of high soluble nitrogen compound. When salt content of cheese was 0.5%, this resulted in extreme deterioration of quality in regard to stretchability, meltability and fat leakage at five weeks and when salt content of cheese was 0.5, 1.0 and 1.5%, soluble nitrogen compound was 4.49, 4.45 and 2.61 % at one week and 19.71, 19.44% and 17.07% at eight weeks, respectively. Stretchability was good at high stretching temperature, and cheese with stretching at 60'C showed poor meltability at the first stage, but this cheese had good meltability in process of time because increase in soluble nitrogen compound was high at low stretching temperature.

The Effects of Tensile Properties on Plane Strain Stretchability of Automotive Steel Sheets (인장특성이 자동차용강판의 평면변형장출성에 미치는 영향)

  • 김영석;박기철;김선원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2676-2683
    • /
    • 1993
  • Plane strain punch stretching test(PSST) was performed for various automotive steel sheets. To clarify the effect of tensile properties on plane strain stretchability, the limiting punch height(LPH) values were obtained in plane strain punch stretching test and related to the tensile properties of the materials. The results show that the total elongation El and work hardening exponent n compared to other parameters obtained from tensile test well correlate with the LPH value. In comparision with the Erichsen test and LDH test the PSST can be statistically used as an alternative in assessing the stamping formability of automotive steel sheets with the advantages of good reproducibility and easy testing method.

Mechanical Properties and Garment Formability of PET/Spandex Stretch Fabrics (PET/스판덱스 스트레치 직물의 역학특성과 의류형성성능)

  • Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.6
    • /
    • pp.1098-1108
    • /
    • 2017
  • This paper investigated stretchability with fabric mechanical properties of one-way and two-way stretch fabrics. For this purpose, 1-way and 2-way woven fabrics were prepared using 150d PET/spandex covered yarns with different thermal treatment according to 4 kinds of wet thermal machines subsequently, fabric mechanical properties were measured and compared with regular PET fabrics. In addition, the garment formability of stretch fabrics was predicted and compared to regular fabrics according to wet thermal treatment. The weft stretchability of 2-way stretch fabric was about 10% higher than the 1-way stretch fabric. The compressibility of the stretch fabrics was 1.5 times higher than regular fabrics. The compressibility of stretch fabrics treated with CPB and rope type wet thermal machine showed higher values than other types of wet thermal machines. The bending rigidity of 2-way stretch fabric was lower than 1-way stretch fabric. Shear rigidity of 2-way stretch fabric was higher than 1-way and regular fabrics. Garment formability of 2-way stretch fabric was higher than regular and one-way stretch fabrics. Garment formability of 2-way stretch fabrics treated with wet thermal conditions under low tension showed the highest values.

Enhanced Stretchability of Gold and Carbon Nanotube Composite Electrodes (Au와 탄소나노튜브 복합체 전극의 연성 향상)

  • Woo, Jung-Min;Jeon, Joo-Hee;Kang, Ji-Yeon;Lee, Tae-Il;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.133-137
    • /
    • 2011
  • Gold have been used as an electrode materials having a good mechanical flexibility as well as electrical conductivity, however the stretchability of the gold on a flexible substrate is poor because of its small elastic modulus. To overcome this mechanical inferiority, the reinforcing gold is necessary for the stretchable electronics. Among the reinforcing materials having a large elastic modulus, carbon nanotube (CNT) is the best candidate due to its good electrical conductivity and nanoscale diameter. Therefore, similarly to ferroconcrete technology, here we demonstrated gold electrodes mechanically reinforced by inserting fabrics of CNTs into their bodies. Flexibility and stretchability of the electrodes were determined for various densities of CNT fabrics. The roles of CNTs in resisting electrical disconnection of gold electrodes from the mechanical stress were confirmed using field emission scanning electron microscope and optical microscope. The best mechanical stability was achieved at a density of CNT fabrics manufactured by 1.5 ml spraying. The concept of the mechanical reinforced metal electrode by CNT is the first trial for the high stretchable conductive materials, and can be applied as electrodes materials in various flexible and stretchable electronic devices such as transistor, diode, sensor and solar cell and so on.

Silver Nanowire-based Stretchable and Transparent Electrodes (Silver Nanowire 기반 Stretchable 투명 전극)

  • Lee, Jin-Young;Kim, Su-Yeon;Jeong, Da-Hye;Shin, Dong-Kyun;Yoo, Su-Ho;Seo, Hwa-Il;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.51-55
    • /
    • 2015
  • We have fabricated silver nanowire (AgNW) films as a stretchable and transparent electrode on polydimethylsiloxane (PDMS) substrates using a spray coater. Inherently, they show poor surface roughness and stretchability. To tackle it, we have employed a conductive polymer, poly (3,4-ethylenedioxythiophene) : Poly(styrene sulfonate) (PEDOT : PSS). PEDTO : PSS solution is mixed with AgNWs or spin-coated on the AgNW film. Compared with AgNW film only, PEDOT : PSS film only, and polymer-mixed AgNW films, the AgNW/polymer bilayer films exhibit much better surface roughness and stretchability. It is found that spray-coating of AgNWs on uncured PDMS and spin-coating of PEDOT : PSS solution on the AgNW films enhance the surface roughness of electrodes. Such a bilayer structure also provides a stable resistance under tensile strain due to the fact that each layer acts as a detour route for carriers. With this structure, we have obtained the peak-to-peak roughness ($R_{pv}$) as low as 76.8nm and a moderate increase of sheet resistance (from $10{\Omega}/{\Box}$ under 0% strain to $30{\Omega}/{\Box}$ under 40% strain).

Mechanical and Optical Characteristics of Transparent Stretchable Hybrid Substrate using PDMS and Ecoflex Material (PDMS-Ecoflex 하이브리드 소재를 이용한 투명 신축성 기판의 기계적 및 광학적 특성)

  • Lee, Won Jae;Park, So-Yeon;Nam, Hyun Jin;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.129-135
    • /
    • 2018
  • In the stretchable electronic devices, the stretchable substrate is a very essential material which determines the stretchability, performances and durability of the stretchable electronic devices. In particular, the current stretchable materials have hysteresis making difficult to used as sensors and other electronic devices. In this study, we developed a PDMS-Ecoflex hybrid stretchable substrate mixed with PDMS and Ecoflex material in order to increase stretchability and improve hysteresis characteristics. Mechanical behavior of the hybrid substrate was evaluated using a tensile test, and optical transmittance of the hybrid substrate was also measured. As the content of Ecoflex increases, the PDMS-Ecoflex hybrid substrate becomes more flexible, and the elastic modulus decreases. In addition, the PDMS substrate failed a tensile strain of 270%, while the PDMS-Ecoflex hybrid substrate did not fail even at 500% strain indicating excellent stretchability. In the repeated tensile test, the hybrid substrate with 2:1 mixing ratio of PDMS and Ecoflex showed hysteresis. On the other hand, in the case of the hybrid substrate with the mixing ratio of 1:1, hysteresis did not occur at a strain of 50% and 100%. Hence, we developed a stretchable substrate with over 150% stretchability and no hysteresis characteristics. The optical transmittance of the Ecoflex substrate was 68.6%, whereas the transmittances of the hybrid substrate with mixing ratio of 2:1 and 1:1 were 78.6% and 75.4%, respectively. These results indicate that the PDMS-Ecoflex hybrid substrate is a potential candidate for a transparent stretchable substrate.