• Title/Summary/Keyword: stress-induced method

Search Result 651, Processing Time 0.027 seconds

A Study on the Design Method of the Reinforced Earth Structures Considering Compaction Induced Stresses (다짐 유발응력을 고려한 보강토 설계방법에 관한 연구)

  • 임철웅;백영식
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.5-16
    • /
    • 1992
  • The main purpose of this the sutdy is to develop the reinforced earth structure design method considering induced stresses and deflections resulting from placement and compaction of soil. In this paper, the new reinforcement Geolog developed by the author is also introduced which is being used as one of the effective earth reinforcing structure against compaction induced stresses. This study adopted the Seed's bilinear model in the estimation of the com paction induced stresses and compute the peak lateral stresses during compaction by doubled Boussinessq's elastic solution of mirror image theory, thereafter, calculate the residual compaction induced lateral stresses from the above peak lateral stress by the residual fraction. It is considered to be reasonable that the compaction induced stresses be added to the lateral earth pressures estimated from conventional gravity analysis considering the actual stresses during service life of the structures. "GEOLOG", a composite of steel bar and attached concrete stopper is found to be effective against tension and pull - out failure. In this paper, the design method considering the compaction induced stresses and the effect of Geolog reinforcement is suggested for the remforced earth structures where backkfill settlement on displacements are not allowed as in the cases of the bridge abutments or double faced reinforcement earth structures.tructures.

  • PDF

FATIGUE STRENGTH OF FILLET WELDED STEEL STRUCTURE UNDER OUT-OF-PLANE BENDING LOAD

  • Kang, Sung-Won;Kim, Wha-Soo;Paik, Young-Min
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.113-120
    • /
    • 2002
  • The effect of out-of-plane loads on the fatigue strength of welded steel structures is examined through fatigue tests with weldment of two fillet weld joint types. The results of the fatigue tests are compared with those under axial loads, on the basis of the hot spot stress range at the weld toe. From the result of the comparison, a method on how to incorporate the effect of the out-of-plane bending stress is proposed using design S-N curves derived from fatigue tests under the axial load. The proposed method is useful for rational assessment of the fatigue strength of fillet-welded structures, where combined stresses of the in-plane axial stress and the out-of-plane bending stress are induced simultaneously due to the complexity of applied loads and structural geometry.

  • PDF

Fatigue Strength of Fillet Welded Steel Structure Under Out-of-plane Bending Load

  • Kang, S.W.;Kim, W.S.;Paik, Y.M.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.33-39
    • /
    • 2002
  • The effect of out-of-plane loads on the fatigue strength of welded steel structures is examined through fatigue tests with weldment of two fillet weld joint types. The results of the fatigue tests are compared with those under axial loads, on the basis of the hot spot stress range at the weld toe. From the result of the comparison, a method on how to incorporate the effect of the out-of-plane bending stress is proposed using design S-N curves derived from fatigue tests under the axial load. The proposed method is useful for rational assessment of the fatigue strength of fillet-welded structures, where combined stresses of the in-plane axial stress and the out-of-plane bending stress are induced simultaneously due to the complexity of applied loads and structural geometry.

  • PDF

Model based Stress Decision Method (모델 기반의 강세 판정 방법)

  • Kim, Woo-Il;Koh, Hoon;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.49-57
    • /
    • 2000
  • This paper proposes an effective decision method focused on evaluating the 'stress position'. Conventional methods usually extract the acoustic parameters and compare them to references in absolute scale, adversely producing unstable results as testing conditions change. To cope with environmental dependency, the proposed method is designed to be model-based and determines the stressed interval by making relative comparison over candidates. The stressed/unstressed models are then induced from normal phone models by adaptive training. The experimental results indicate that the proposed method is promising, and that it is useful for automatic detection of stress positions. The results also show that generating the stressed/unstressed model by adaptive training is effective.

  • PDF

Application of Tensioning Method for Filet Welding Deformation Reduction (필릿 용접변형 감소를 위한 장력법의 적용)

  • Lee, Joo-Sung;Park, Jae-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.197-200
    • /
    • 2006
  • The portion of thin plate is expected to increases as to the development of design and fabrication technology. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to fillet weld of thin plates to reduce the weld-induced deformation. For this, fillet welding test have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. From the present study, it has been found that the tenssoning method is effective on reduction of weld-induced deformation.

  • PDF

A Study on the Reduction of Fillet Welding Deformation by Applying the Tensioning Method (장력법을 이용한 필릿용접변형의 감소에 관한 연구)

  • Lee, Joo-Sung;Park, Jae-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.590-597
    • /
    • 2007
  • The portion of thin plate is expected to increases as to the development of design and fabrication technology. The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates, and in addition internal and external constraints much more influence upon weld-induced deformation of thin plates. This paper is aimed at applying the mechanical tensioning method to fillet weld of thin plates to reduce the weld-induced deformation. For this purpose, fillet welding tests have been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. From the present study, it has been found that the tensioning method is effective on reduction of weld-induced deformation.

Surface crack propagation behavior and crack closure phenomena in 5083-H113 aluminum alloy (5083-H113 알루미늄合金의 表面균열進展擧動과 균열닫힘 現象)

  • 박영조;김정규;신용승;김영운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.243-252
    • /
    • 1987
  • The propagation and closure behavior of surface crack initiated at a sharply notched specimens were investigated in 5083-H113 aluminium alloy under constant amplitude of tension load by the unloading elastic compliance method. The crack shape (aspect ratio) was found to be approximately semicircular during the crack was being small and to be changed to semi-elliptical during it was being long. The propagation rate of a surface crack initiated from notch root decelerated with increasing crack length when the crack was small and then accelerated when it was large. The effect of stress ratio was large in lower .DELTA.K range, but the effective stress intensity factor range .DELTA.K$_{eff}$ was found to diminish the difference of the crack propagation rate. By considering the increase in crack closure stress with crack length and examining the microphotographs, plasticity-induced and roughness-induced crack closure mechanisms were predominant in the range of this study.y.

Theoretical analysis of tensile stresses and displacement in orthotropic circular column under diametrical compression

  • Tsutsumi, Takashi;Iwashita, Hiroshi;Miyahara, Kagenobu
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.333-347
    • /
    • 2011
  • This paper shows the solution for an orthotropic disk under the plane strain condition obtained with complex stress functions. These stress functions were induced by Lekhnitskii and expanded by one of the authors. Regarding diametrical compression test, the finite element method poses difficulties in representing the concentrated force because the specimens must be divided into finite elements during calculation. On the other hand, the method shown in this study can exactly represent this force. Some numerical results are shown and compared with those obtained under the plane stress condition for both stress and displacement. This comparison shows that the differences between the tensile stresses occurred under the plane strain condition and also that the differences under a plane stress condition increase as the orthotropy ratio increases for some cases.

Bearing capacity of strip footings on unsaturated soils under combined loading using LEM

  • Afsharpour, Siavash;Payan, Meghdad;Chenari, Reza Jamshidi;Ahmadi, Hadi;Fathipour, Hessam
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.223-235
    • /
    • 2022
  • Bearing capacity of shallow foundations is often determined for either dry or saturated soils. In some occasions, foundations may be subjected to external loading which is inclined and/or eccentric. In this study, the ultimate bearing capacity of shallow foundations resting on partially saturated coarse-grained cohesionless and fine-grained cohesive soils subjected to a wide range of combined vertical (V) - horizontal (H) - moment (M) loadings is rigorously evaluated using the well-established limit equilibrium method. The unified effective stress approach as well as the suction stress concept is effectively adopted so as to simulate the behaviour of the underlying unsaturated soil medium. In order to obtain the bearing capacity, four equilibrium equations are solved by adopting Coulomb failure mechanism and Bishop effective stress concept and also considering a linear variation of the induced matric suction beneath the foundation. The general failure loci of the shallow foundations resting on unsaturated soils at different hydraulic conditions are presented in V - H - M spaces. The results indicate that the matric suction has a marked influence on the bearing capacity of shallow foundations. In addition, the effect of induced suction on the ultimate bearing capacity of obliquely-loaded foundations is more pronounced than that of the eccentrically-loaded footings.

Sidewall effect in a stress induced method for Spontaneous growth of Bi nanowires

  • Kim, Hyun-Su;Ham, Jin-Hee;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.95-95
    • /
    • 2009
  • Single-crystalline Bi nanowires have motivated many researchers to investigate novel quasi-one-dimensional phenomena such as the wire-boundary scattering effect and quantum confinement effects due to their electron effective mass (~0.001 me). Single crystalline Bi nanowires were found to grow on as-sputtered films after thermal annealing at $270^{\circ}C$. This was facilitated by relaxation of stress between the film and the thermally oxidized Si substrate that originated from a mismatch of the thermal expansion. However, the method is known to produce relatively lower density of nanowires than that of other nanowire growth methods for device applications. In order to increase density of nanowire, we propose a method for enhancing compressive stress which is a driving force for nanowire growth. In this work, we report that the compressive stress can be controlled by modifying a substrate structure. A combination of photolithography and a reactive ion etching technique was used to fabricate patterns on a Si substrate. It was found that the nanowire density of a Bi film grown on $100{\mu}m{\times}100{\mu}m$ pattern Si substrate increased over seven times higher than that of a Bi sample grown on a normal substrate. Our results show that density of nanowire can be enhanced by sidewall effect in optimized proper pattern sizes for the Bi nanowire growth.

  • PDF