• Title/Summary/Keyword: stress-induced

Search Result 5,105, Processing Time 0.027 seconds

Effect of Bottom Hole Pressure and Depressurization Rate on Stability and Gas Productivity of Hydrate-bearing Sediments during Gas Production by Depressurization Method (감압법을 이용한 가스 생산 시 하이드레이트 부존 퇴적층의 지반 안정성 및 가스 생산성에 대한 시추 공저압 및 감압 속도의 영향)

  • Kim, Jung-Tae;Kang, Seok-Jun;Lee, Minhyeong;Cho, Gye-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.19-30
    • /
    • 2021
  • The presence of the hydrate-bearing sediments in Ulleung Basin of South Korea has been confirmed from previous studies. Researches on gas production methods from the hydrate-bearing sediments have been conducted worldwide. As production mechanism is a complex phenomenon in which thermal, hydraulic, and mechanical phenomena occur simultaneously, it is difficult to accurately conduct the productivity and stability analysis of hydrate bearing sediments through lab-scale experiments. Thus, the importance of numerical analysis in evaluating gas productivity and stability of hydrate-bearing sediments has been emphasized. In this study, the numerical parametric analysis was conducted to investigate the effects of the bottom hole pressure and the depressurization rate on the gas productivity and stability of hydrate-bearing sediments during the depressurization method. The numerical analysis results confirmed that as the bottom hole pressure decreases, the productivity increases and the stability of sediments deteriorates. Meanwhile, it was shown that the depressurization rate did not largely affect the productivity and stability of the hydrate-bearing sediments. In addition, sensitivity analysis for gas productivity and stability of the sediments were conducted according to the depressurization rate in order to establish a production strategy that prevents sand production during gas production. As a result of the analysis, it was confirmed that controlling the depressurization rate from a low value to a high value is effective in securing the stability. Moreover, during gas production, the subsidence of sediments occurred near the production well, and ground heave occurred at the bottom of the production well due to the pressure gradient. From these results, it was concluded that both the productivity and stability analyses should be conducted in order to determine the bottom hole pressure when producing gas using the depressurization method. Additionally, the stress analysis of the production well, which is induced by the vertical displacements of sediments, should be evaluated.

A Numerical Analysis to Estimate Disposal Spacing and Rock Mass Condition for High Efficiency Repository Based on Temperature Criteria of Bentonite Buffer (벤토나이트 완충재 설계 기준 온도에 따른 고효율 처분시스템 처분 간격 및 암반 조건 산정을 위한 수치해석적 연구)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Cho, Dongkeun
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.289-308
    • /
    • 2021
  • This study conducts coupled thermo-hydro-mechanical numerical modeling to investigate the maximum temperature and conditions for securing mechanical stability of the high-level radioactive waste repository when temperature criteria of bentonite buffer are 100℃ and 125℃, respectively. In case of temperature criterion of buffer as 100℃, the maximum temperatures at the interface between canister and buffer are calculated to be 99.4℃ and 99.8℃, respectively for a case with disposal tunnel spacing of 40 m and deposition hole spacing of 5.5 m and for the other case with disposal tunnel spacing of 30 m and deposition hole spacing of 6.5 m. In case of temperature criterion of buffer as 125℃, spacings of disposal tunnel and deposition hole could be decreased to 30 m and 4.5 m, respectively, which reduces the disposal area up to 55% compared to the disposal area of KRS+. According to analysis of mechanical stability for various disposal spacings, RMR of rock mass for KRS+ should be larger than 72.4 which belongs to good rock in RMR classification to prevent failure of rock mass. As disposal spacing is decreased, required RMR of rock mass is increased. In order to prevent failure of rock mass for a case with disposal tunnel spacing of 30 m and deposition hole spacing of 4.5 m, RMR larger than 87.3 is needed. However, mechanical stability of the repository is secured for all cases with RMR over 75 considering the enhancement of rock strength due to confining stress induced by swelling of the bentonite buffer and backfill.

Phenotypic Variation in the Breast of Live Broiler Chickens Over Time (시간에 따른 생축 육계 가슴살의 표현형 변이)

  • Ji-Won Kim;Chang-Ho Han;Seul-Gy Lee;Jun-Ho Lee;Su-Yong Jang;Jeong-Uk Eom;Kang-Jin Jeong;Jae-Cheol Jang;Hyun-Wook Kim;Han-Sul Yang;Sea-Hwan Sohn;Sang-Hyon Oh
    • Korean Journal of Poultry Science
    • /
    • v.51 no.2
    • /
    • pp.97-106
    • /
    • 2024
  • This study utilized the non-invasive MyotonPRO® device to analyze the stiffness in breast muscles of commercial broilers (Ross 308 and Arbor Acres) and compared these findings with data reported for Ross 708, where Woody Breast (WB) symptoms had been previously documented. The research revealed that Ross 308 and Arbor Acres displayed relatively lower stiffness values compared to Ross 708, suggesting a lack of WB expression. These results indicate differentiation in breast muscle traits across strains and underscore the necessity for further research into factors influencing WB manifestation. The study also measured additional muscle tone characteristics such as Frequency, Decrement, Relaxation, and Creep across various growth stages (2, 4, 6, and 8 weeks), finding significant variations with pronounced severity at weeks 2 and 8. An increase in stiffness was observed as the broilers aged, pointing to potential growth-related or stress-induced changes affecting WB severity. A strong positive correlation was established between increased breast meat weight and WB severity, highlighting that heavier breast meat could exacerbate the condition. This correlation is vital for the poultry industry, suggesting that weight management could help mitigate WB effects. Moreover, the potential for genetic selection and breeding strategies to reduce WB occurrence was emphasized, which could aid in enhancing management practices in commercial poultry production. Collectively, these insights contribute to a deeper understanding of WB in broilers and propose avenues for future research and practical strategies to minimize its impact.

Effects of a soybean sprouts mixture containing Hovenia dulcis Thunb. fruit concentrate on hangover relief and liver function improvement in chronically alcohol-treated rats (만성 알코올 처리 쥐에 대한 헛개나무 열매 농축액을 함유한 콩나물 혼합물의 숙취해소 및 간 기능 개선 효과)

  • Ji-An Heo;Hye-Ji Min;Wool-Lim Park;Jeong-Ho Kim;Yeong-Seon Won;Kwon-Il Seo
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.486-498
    • /
    • 2024
  • This study examined the effects of a soybean sprouts mixture containing 1.5% Hovenia dulcis Thunb. fruit concentrate (SHM) on relieving hangovers and improving liver function in chronically alcohol-treated rats. The ampelopsin and L-asparagine contents in the SHM were 10.52, 35.19 ppm. When chronic alcohol-induced rats were treated with SHM, the body weight increased and the liver weight decreased. The serum alcohol and acetaldehyde concentrations were lowest in the SHM group, and the hepatic ADH and ALDH activities were highest in the SHM group. Chronic alcohol induction increased the activity of liver function indicator enzymes such as ALT, AST, and GGT, but the activity was decreased significantly with the SHM treatment. The triglyceride content in hepatic and serum blood samples was lowest in the SHM group. The serum total cholesterol and LDL cholesterol contents decreased in the SHM group, and the HDL cholesterol content increased. The color of the hepatic observed morphologically in the SHM group was reddish brown, and the size and number of lipid droplets in the hepatic observed pathologically decreased. The hepatic and serum lipid peroxidation content of the SHM group decreased. The hepatic and serum GSH content increased in the SHM group. Therefore, SHM can be a functional food that can help hangovers and improve liver function.

Factors influencing the axes of anterior teeth during SWA on masse sliding retraction with orthodontic mini-implant anchorage: a finite element study (교정용 미니 임플랜트 고정원과 SWA on masse sliding retraction 시 전치부 치축 조절 요인에 관한 유한요소해석)

  • Jeong, Hye-Sim;Moon, Yoon-Shik;Cho, Young-Soo;Lim, Seung-Min;Sung, Sang-Jin
    • The korean journal of orthodontics
    • /
    • v.36 no.5
    • /
    • pp.339-348
    • /
    • 2006
  • Objective: With development of the skeletal anchorage system, orthodontic mini-implant (OMI) assisted on masse sliding retraction has become part of general orthodontic treatment. But compared to the emphasis on successful anchorage preparation, the control of anterior teeth axis has not been emphasized enough. Methods: A 3-D finite element Base model of maxillary dental arch and a Lingual tipping model with lingually inclined anterior teeth were constructed. To evaluate factors influencing the axis of anterior teeth when OMI was used as anchorage, models were simulated with 2 mm or 5 mm retraction hooks and/or by the addition of 4 mm of compensating curve (CC) on the main archwire. The stress distribution on the roots and a 25000 times enlarged axis graph were evaluated. Results: Intrusive component of retraction force directed postero-superiorly from the 2 mm height hook did not reduce the lingual tipping of anterior teeth. When hook height was increased to 5 mm, lateral incisor showed crown-labial and root-lingual torque and uncontrolled tipping of the canine was increased.4 mm of CC added to the main archwire also induced crown-labial and root-lingual torque of the lateral incisor but uncontrolled tipping of the canine was decreased. Lingual tipping model showed very similar results compared with the Base model. Conclusion: The results of this study showed that height of the hook and compensating curve on the main archwire can influence the axis of anterior teeth. These data can be used as guidelines for clinical application.