• Title/Summary/Keyword: stress wave velocity

Search Result 243, Processing Time 0.035 seconds

Measuring Young's Modulus of Materials by Using Accelerometer (가속도계를 이용한 재료의 영계수 측정방법)

  • Sohn, Chang-Ho;Park, Jin-Ho;Yoon, Doo-Byung;Chong, Ui-Pil;Choi, Young-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1158-1164
    • /
    • 2006
  • For the description of the elastic properties of linear objects a convenient parameter is the ratio of the stress to the strain, a parameter called the Young's modulus of the material. Young's modulus can be used to predict the elongation or compression of an object as long as the stress is less than the yield strength of the material. Conventional method for estimating Young's modulus measured the ratio of stress to corresponding strain below the proportional limit of a material using a tensile testing machine. But the method needs precision specimens and expensive equipment. In this paper, we proposed method for estimating Young's modulus using accelerometer. The basic idea comes from that the wave velocity is different as the Young's modulus. To obtain Young's modulus, a group velocity is obtained. It is difficult to measure group velocity. This is because plate medium has a dispersive characteristics which has different wave speed as frequency. In this paper, we used Wigner-Ville distribution to measure group velocity. To verify the proposed method, steel and acryl plate experiments have been performed. Experimental results show that the proposed method is powerful for estimating Young's modulus.

Measuring Young's Modulus of Materials by using Accelerometer (가속도계를 이용한 재료의 영계수 측정방법)

  • Choi, Young-Chul;Park, Jin-Ho;Yoon, Doo-Byung;Sohn, Chang-Ho;Hwang, Il-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1027-1032
    • /
    • 2007
  • For the description of the elastic properties of linear objects a convenient parameter is the ratio of the stress to the strain, a parameter called the Young's modulus of the material. Young's modulus can be used to predict the elongation or compression of an object as long as the stress is less than the yield strength of the material. Conventional method for estimating Young's modulus measured the ratio of stress to corresponding strain below the proportional limit of a material using a tensile testing machine. But the method needs precision specimens and expensive equipment. In this paper, we proposed method for estimating Young's modulus using accelerometer. The basic idea comes from that the wave velocity is different as the Young's modulus. To obtain Young's modulus, a group velocity is obtained. It is difficult to measure group velocity. This is because plate medium has a dispersive characteristics which has different wave speed as frequency. In this paper, we used Wigner-Ville distribution to measure group velocity. To verify the proposed method, steel and acryl plate experiments have been performed. Experimental results show that the proposed method is powerful for estimating Young's modulus.

  • PDF

Variation in Tree Growth Characteristics, Pilodyn Penetration, and Stress-wave Velocity in 65 Families of Acacia mangium Trees Planted in Indonesia

  • HIDAYATI, Fanny;LUKMANDARU, Ganis;INDRIOKO, Sapto;SUNARTI, Sri;NIRSATMANTO, Arif
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.633-643
    • /
    • 2019
  • Growth characteristics [stem diameter (D), tree height (H)] and wood properties [Pilodyn penetration (P) and stress-wave velocity (SWV)] were measured for 65 families of 6-year-old Acacia mangium trees planted in Indonesia, in order to characterize their variation in D, H, P, and SWV. Therefore, the correlations between the measured characteristics were also determined, and their significant differences observed. Furthermore, their low to moderate values of narrow-sense heritability was obtained, and the results indicated the characteristics to be genetically controlled in A. mangium. In addition, highly significant positive correlations were observed among the growth characteristics, suggesting a close relationship, while there was no significant association between the growth characteristics and P, as well as SWV, indicating their independent. Therefore, these results demonstrate a potential for the improvement of both growth and wood properties of A. mangium trees, using the appropriate breeding programs. In addition, 18 families showed good performance in D and SWV, signifying their positive prospect of being considered as plus trees for the next generation breeding cycles.

Residual Stress Measurement by L$_{CR}$ Wave and Acoustic Emission Characteristics from Fatigue Crack Propagation in STS316L Weldment (STS316L용접재의 표면파에 의한 잔류응력 측정과 균열진전시의 음향방출특성)

  • 남기우;박소순;안석환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, the residual stress and the acoustic emission Charactreistics from fatigue crack propagation were investigated, bused on the welded material of STS316L. The residual stress of welding locations could be evaluated by ultrasonic parameters, such as L$_{CR}$ wave velocity and L$_{CR}$ wave frequency; the residual stress between base metal and weld metal was evaluated. In the fatigue tests, three types of signals were observed, regardless of specimen condition, base metal, and weld metal. Based on NDE analysis of AE signals by the time-frequency analysis method, it should also be possible to evaluate, in real-time, the crack propagation and final fracture process, resulting from various damages and defects in welded structural members.

Application of ADE-PML Boundary Condition to SEM using Variational Formulation of Velocity-Stress 3D Wave Equation (속도-응력 변분식을 이용한 3차원 SEM 탄성파 수치 모사에 대한 ADE-PML경계조건의 적용)

  • Cho, Chang-Soo;Son, Min-Kyung
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 2012
  • Various numerical methods in simulation of seismic wave propagation have been developed. Recently an innovative numerical method called as the Spectral Element Method (SEM) has been developed and used in wave propagation in 3-D elastic media. The SEM that easily implements the free surface of topography combines the flexibility of a finite element method with the accuracy of a spectral method. It is generally used a weak formulation of the equation of motion which are solved on a mesh of hexahedral elements based on the Gauss-Lobatto-Legendre integration rule. Variational formulations of velocity-stress motion are newly modified in order to implement ADE-PML (Auxiliary Differential Equation of Perfectly Matched Layer) in wave propagation in 3-D elastic media, because a general weak formulation has a difficulty in adapting CFS (Complex Frequency Shifted) PML (Perfectly Matched Layer). SEM of Velocity-Stress motion having ADE-PML that is very efficient in absorbing waves reflected from finite boundary is verified with simulation of 1-D and 3-D wave propagation.

[ $PFC^{3D}$ ] Modeling of Stress Wave Propagation Using The Hopkinson's Effect ($PFC^{3D}$ 상에서의 홉킨슨 효과를 이용한 응력파의 전파모델링)

  • Choi Byung-Hee;Ryu Chang-ha
    • Explosives and Blasting
    • /
    • v.23 no.3
    • /
    • pp.27-42
    • /
    • 2005
  • An explosion modeling technique was developed by using the spherical discrete element code, $PFC^{3D}$, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a $PFC^{3D}$ particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). The stress wave propagation modeling was conducted by simulating the experimental approach based on the Hopkinson's effect combined with the spatting phenomenon that had previously been developed to determine the dynamic tensile strength of Inada granite. As a result, the stress wave velocity obtained by the proposed modeling technique was 4167 m/s, which is merely $3\%$ lower than the actual wave velocity of 4300 m/s for an Inada granite.

Surface wave propagation in an initially stressed heterogeneous medium having a sandy layer and a point source

  • Manna, Santanu;Misra, J.C.;Kundu, Santimoy;Gupta, Shishir
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.169-176
    • /
    • 2018
  • An attempt has been made here to study the propagation of SH-type surface waves in an elastic medium, which is initially stressed and heterogeneous and has a point source inside the medium. The upper portion of the composite medium is a sandy layer. It is situated on an initially stressed heterogeneous half-space, whose density, rigidity and internal friction are function of depth. The analysis has been carried out by using Fourier transform and Green's function approach. The phase velocity has been investigated for several particular situations. It has been shown that the results of the study agree with those the case of Love wave propagation in a homogeneous medium in the absence of the sandy layer, when the initial stress is absent. In order to illustrate the validity of the analysis presented here, the derived analytical expression has been computed numerically, by considering an illustrative example and the variances of the concerned physical variables have been presented graphically. It is observed that the velocity of shear wave is amply influenced by the initial stress and heterogeneity parameters and the presence of the sandy layer. The study has an important bearing on investigations of different problems in the earth's interior and also in seismological studies.

A Study on the Development of the Dynamic Photoelastic Hybrid Method for Isotropic Material (등방성체용 동적 광탄성 하이브리드 법 개발에 관한 연구)

  • Sin, Dong-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2220-2227
    • /
    • 2000
  • In this paper, dynamic photoelastic hybrid method is developed and its validity is certified. The dynamic photoelastic hybrid method can be used on the obtaining of dynamic stress intensity factors and dynamic stress components. The effect of crack length on the dynamic stress intensity factors is less than those on the static stress intensity factors. When structures are under the dynamic mixed mode load, dynamic stress intensity factor of mode I is almost produced. Dynamic loading device manufactured in this research can be used on the research of dynamic behavior when mechanical resonance is produced and when crack is propagated with the constant velocity.

Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.237-248
    • /
    • 2018
  • This study presents the investigation of wave dispersion characteristics of a magneto-electro-elastic functionally graded (MEE-FG) nanosize beam utilizing nonlocal strain gradient theory (NSGT). In this theory, a material length scale parameter is propounded to show the influence of strain gradient stress field, and likewise, a nonlocal parameter is nominated to emphasize on the importance of elastic stress field effects. The material properties of heterogeneous nanobeam are supposed to vary smoothly through the thickness direction based on power-law form. Applying Hamilton's principle, the nonlocal governing equations of MEE-FG nanobeam are derived. Furthermore, to derive the wave frequency, phase velocity and escape frequency of MEE-FG nanobeam, an analytical solution is employed. The validation procedure is performed by comparing the results of present model with results exhibited by previous papers. Results are rendered in the framework of an exact parametric study by changing various parameters such as wave number, nonlocal parameter, length scale parameter, gradient index, magnetic potential and electric voltage to show their influence on the wave frequency, phase velocity and escape frequency of MEE-FG nanobeams.

Investigation on the propagation mechanism of explosion stress wave in underground mining

  • Wang, Jiachen;Liu, Fei;Zhang, Jinwang
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.295-305
    • /
    • 2019
  • The bedding plane has a significant influence on the effect of blasting fragmentation and the overall performance of underground mining. This paper explores the effects of fragmentation of the bedding plane and different angles by using the numerical analysis. ANSYS/LS-DYNA code was used for the implementation of the models. The models include a dynamic compressive and tensile failure which is applied to simulate the fractures generated by the explosion. Firstly, the cracks propagation with the non-bedding plane in the coal with two boreholes detonated simultaneously is calculated and the particle velocity and maximum principal stress at different points from the borehole are also discussed. Secondly, different delay times between the two boreholes are calculated to explore its effects on the propagation of the fractures. The results indicate that the coal around the right borehole is broken more fully and the range of the cracks propagation expanded with the delay time increases. The peak particle velocity decreases first and then increases with the distance from the right borehole increasing. Thirdly, different angles between the bedding plane and the centerline of the two boreholes and the transmission coefficient of stress wave at a bedding plane are considered. The results indicated that with the angles increase, the number of the fractures decreases while the transmission coefficient increases.