• Title/Summary/Keyword: stress wave elasticity

Search Result 22, Processing Time 0.023 seconds

Evaluation of Static Bending Properties for Some Domestic Softwoods and Tropical Hardwoods Using Sonic Stress Wave Measurements (응력파(應力波) 측정(測定)에 의(依)한 수종(數種)의 국산(國産) 침엽수재(針葉樹材) 및 열대(熱帶) 활엽수재(闊葉樹材)의 휨성질(性質) 평가(評價))

  • Lee, Do-Sik;Jo, Jae-Sung;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-14
    • /
    • 1997
  • Stress wave velocity, wave impedance, and stress wave elasticity of small, clear bending specimens of five domestic softwoods (Pinus densiflora, Pinus koraiensis, Chamaecyparis obtusa, Cryptomeria japonica, and Larix leptolepis) and four tropical hardwoods(Kempas, Malas, Taun, and Terminalia) were correlated with static bending modulus of elasticity(MOE) and modulus of rupture(MOR). The degree of correlation between stress wave parameters and static bending properties was dependent on wood species tested. Stress wave elasticity and wave impedance were better predictors for static bending properties than stress wave velocity for each species individually and for softwood or hardwood species taken as a group, even though elasticity and impedance were nearly equally correlated with static bending properties apparently. Based upon the correlation coefficient between stress wave parameters and static properties, stress wave elasticity and wave impedance were found as stress wave parameters which can be used for the purpose of the reliable and successful prediction of bending properties. The degree of correlation between static MOE and MOR was also different according to wood species tested. Static MOE was nearly as well correlated with MOR as was stress wave elasticity. The results of this research are encouraging and can be considered as a basis for further work using full-size lumber. From the results of this study, it was concluded that stress wave measurements could provide useful predictions of static bending properties and was a feasible method for machine stress grading of domestic softwoods and tropical hardwoods tested in this study.

  • PDF

Assessment of Incipient Decay of Radiata Pine Wood Using Stress-Wave Technique in the Longitudinal Direction (수축방향(樹軸方向) 응력파(應力波) 방법(方法)에 의(依)한 라디에타소나무의 초기부후(初期腐朽) 평가(評價))

  • Kim, Gyu-Hyeok;Jee, Woo-Kuen;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.1-6
    • /
    • 1996
  • This study was performed to investigate the feasibility of using sonic stress-wave technique in the longitudinal direction for the assessment of incipient decay of radiata pine wood. Decayed bending specimens by Tyromyces palustris and Gloeophyllum trabeum for varoious periods were tested nondestructively using stress-wave technique in the longitudinal direction and destructively. Decay detection, quantitative assessment of decay, and the prediction of residual strength of decayed wood with less than five percent weight loss can be feasible using stress-wave parameters (wave velocity, wave impedance, stress-wave elasticity) measured by stress-wave technique in the longitudinal direction and their percent reduction due to decay.

  • PDF

Assessment of Incipient Decay of Radiata Pine Wood Using Stress-wave Technique in the Transverse Direction (횡단방향(橫斷方向) 응력파(應力波) 방법(方法)에 의(依)한 라디에타소나무의 초기부후(初期腐朽) 평가(評價))

  • Kim, Gyu-Hyeok;Jee, Woo-Guen;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.18-27
    • /
    • 1996
  • The feasibility of using stress-wave technique in the transverse direction for the assessment of early stages of decay was investigated using compression test specimens having different annual ring orientations subjected to decay by Tyromyces palustris for various time intervals. Decay detection, quantitative assessment of decay, and the prediction of residual strength of decayed wood with less than five percent weight loss can be feasible using stress-wave parameters (wave velocity, wave impedance, and stress-wave elasticity) and their percent reduction due to decay, measured by stress-wave technique in the transverse direction. The use of stress-wave technique in the transverse direction for the application of this technique to structural members in service is desirable, when considering the easiness of attachment of accelerometers of stress-wave measuring device on the surface of members and also accurate detection of localized decayed areas. In stress-wave technique in the transverse direction, stress-wave parameters measured were different according to the angles between wave propagation path and annual ring, due to the anisotropy of wood structure. Therefore, it is recommended to use percent reduction in stress-wave parameters instead of stress-wave parameters. This evaluation method using percent reduction in stress-wave parameters is ideal when it is impossible to observe annual ring orientation on the transverse surface of wood.

  • PDF

A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Shahsavari, Davood;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.99-110
    • /
    • 2018
  • In this paper, a new size-dependent quasi-3D plate theory is presented for wave dispersion analysis of functionally graded nanoplates while resting on an elastic foundation and under the hygrothermaal environment. This quasi-3D plate theory considers both thickness stretching influences and shear deformation with the variations of displacements in the thickness direction as a parabolic function. Moreover, the stress-free boundary conditions on both sides of the plate are satisfied without using a shear correction factor. This theory includes five independent unknowns with results in only five governing equations. Size effects are obtained via a higher-order nonlocal strain gradient theory of elasticity. A variational approach is adopted to owning the governing equations employing Hamilton's principle. Solving analytically via Fourier series, these equations gives wave frequencies and phase velocities as a function of wave numbers. The validity of the present results is examined by comparing them with those of the known data in the literature. Parametric studies are conducted for material composition, size dependency, two parametric elastic foundation, temperature and moisture differences, and wave number. Some conclusions are drawn from the parametric studies with respect to the wave characteristics.

Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.141-153
    • /
    • 2019
  • This research deals with wave propagation of the functionally graded (FG) nano-beams based on the nonlocal elasticity theory considering surface and flexoelectric effects. The FG nano-beam is resting in Winkler-Pasternak foundation. It is assumed that the material properties of the nano-beam changes continuously along the thickness direction according to simple power-law form. In order to include coupling of strain gradients and electrical polarizations in governing equations of motion, the nonlocal non-classical nano-beam model containg flexoelectric effect is used. Also, the effects of surface elasticity, dielectricity and piezoelectricity as well as bulk flexoelectricity are all taken into consideration. The governing equations of motion are derived using Hamilton principle based on first shear deformation beam theory (FSDBT) and also considering residual surface stresses. The analytical method is used to calculate phase velocity of wave propagation in FG nano-beam as well as cut-off frequency. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as flexoelectric coefficients of the surface, bulk and residual surface stresses, Winkler and shear coefficients of foundation, power gradient index of FG material, and geometric dimensions on the wave propagation characteristics of FG nano-beam. The numerical results indicate that considering surface effects/flexoelectric property caused phase velocity increases/decreases in low wave number range, respectively. The influences of aforementioned parameters on the occurrence cut-off frequency point are very small.

Fractional wave propagation in radially vibrating non-classical cylinder

  • Fadodun, Odunayo O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.465-471
    • /
    • 2017
  • This work derives a generalized time fractional differential equation governing wave propagation in a radially vibrating non-classical cylindrical medium. The cylinder is made of a transversely isotropic hyperelastic John's material which obeys frequency-dependent power law attenuation. Employing the definition of the conformable fractional derivative, the solution of the obtained generalized time fractional wave equation is expressed in terms of product of Bessel functions in spatial and temporal variables; and the resulting wave is characterized by the presence of peakons, the appearance of which fade in density as the order of fractional derivative approaches 2. It is obtained that the transversely isotropic structure of the material of the cylinder increases the wave speed and introduces an additional term in the wave equation. Further, it is observed that the law relating the non-zero components of the Cauchy stress tensor in the cylinder under consideration generalizes the hypothesis of plane strain in classical elasticity theory. This study reinforces the view that fractional derivative is suitable for modeling anomalous wave propagation in media.

Medical Ultrasonic Elasticity Imaging Techniques (의료용 초음파탄성영상법)

  • Jeong, Mok-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.573-584
    • /
    • 2012
  • Breast and prostate tumors or cancers tend to be stiffer than the surrounding normal tissue. However, the difference in echogenicity between cancerous and normal tissues is not clearly distinguishable in ultrasound B-mode imaging. Thus, imaging the stiffness contrast between the two different tissue types helps to diagnose lesions quantitatively, and such a method of imaging the elasticity of human tissue is termed ultrasound elasticity imaging. Recently, elasticity imaging has become an effective complementary diagnostic modality along with ultrasound B-mode imaging. This paper presents various elasticity imaging methods that have been reported up to now and describes their characteristics and principles of operation.

A Basic Research on Estimation of Material Condition by Using Nonlinear Elastic Modulus (비선형 탄성계수를 이용한 재료변질 상태평가에대한 기초적 연구)

  • 김경조;장경영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.348-352
    • /
    • 1995
  • In the conventional linear elasticity, ultrasonic velocity is determined by elastic modulus and density of te medium which ultrasonic wave propagates through. But, practical ultrsonic wave depends on the stress acting in the medium, and as the stress increases such dependency becomes nonlinear. This nonlinear dependencyof ultrasonic velocity on stress can be identified by using nonlinear elastic modulus up to 4th order. In thid paper, with the above background relationships between nonlinear elastic modulus and the internalstatus of materials, normal, plastic deformed or heat stressed, are discussed. For this purpose, a new type of measuring system extended from the general nondestructive UT(ultrasonic test) equipment is constructed.

  • PDF

A Study on the Longitudinal Vibration of Finite Elastic Medium using Laboratory Test (실내실험을 통한 유한탄성 매질의 종방향 진동에 대한 연구)

  • Park, Ki-Shik
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.58-62
    • /
    • 2002
  • Longitudinal wave tests with finite elastic medium were performed to investigate the difference between measured values and theoretical values of propagation velocity and elasticity modulus. Each accelerometer was attached on finite elastic medium with same phase and different positions to check the particle motion. The results show that measured values of elasticity moduli from both time domain and frequency domain were similiar to theoretical value. Polarity of signal depends entirely on the phase of accelerometer. It proved that the propagation velocity and the particle motion are in the same direction when a compressive stress is applied. And also the propagation velocity and the particle motion depend on the intensity of the stress and material properties respectively.

Propagation of love-type wave in a temperature dependent crustal Layer

  • Kakar, Rajneesh;Kakar, Shikha;Narang, Rajeev Kumar
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.237-241
    • /
    • 2017
  • The present study deals with the propagation of Love wave (a type of surface wave) in crustal layer having temperature dependent inhomogeneity. It is assumed that the inhomogeneity in the crustal layer arises due to linear temperature variation in rigidity and density. The upper boundary of the crustal layer is traction free. Numerical results for Love wave are discussed by plotting analytical curves between phase velocity against wave number and stress against depth in the presence of inhomogeneity and temperature parameters. The effects boundary condition on the Love wave propagation in the crustal layer is also analyzed. The results presented in this study would be useful for seismologists and geologists.