• 제목/요약/키워드: stress simulation

검색결과 2,249건 처리시간 0.025초

Development of an Ultra-Slim System in Package (SiP)

  • Gao, Shan;Hong, Ju-Pyo;Kim, Jin-Su;Yoo, Do-Jae;Jeong, Tae-Sung;Choi, Seog-Moon;Yi, Sung
    • 마이크로전자및패키징학회지
    • /
    • 제15권1호
    • /
    • pp.7-18
    • /
    • 2008
  • This paper reviews the current development of an ultra-slim SiP for Radio Frequency (RF) application, in which three flip chips, additional passive components and Surface Acoustic Wave (SAW) filters are integrated side-by-side. A systematic investigation is carried out for the design optimization, process and reliability improvement of the package, which comprises several aspects: a design study based on the 3D thermo-mechanical finite element analysis of the packaging, the determination of stress, warpage distribution, critical failure zones, and the figuration of the effects of material properties, process conditions on the reliability of package. The optimized material sets for manufacturing process were determined which can reduce the number of testing samples from 75 to 2. In addition the molded underfilling (MUF) process is proposed which not only saves one manufacturing process, but also improves the thermo-mechanical performance of the package compared with conventional epoxy underfilling process. In the end, JEDEC's moisture sensitivity test, thermal cycle test and pressure cooker tests have also been carried out for reliability evaluation. The test results show that the optimized ultra-slim SiP has a good reliability performance.

  • PDF

Hot-Carrier 현상을 줄인 새로운 구조의 자기-정렬된 ESD MOSFET의 분석 (Analysis of a Novel Self-Aligned ESD MOSFET having Reduced Hot-Carrier Effects)

  • 김경환;장민우;최우영
    • 전자공학회논문지D
    • /
    • 제36D권5호
    • /
    • pp.21-28
    • /
    • 1999
  • Deep Submicron 영역에서 요구되는 고성능 소자로서 자기-정렬된 ESD(Elevated Source/Drain)구조의 MOSFET을 제안하였다. 제안된 ESD 구조는 일반적인 LDD(Lightly-Doped Drain)구조와는 달리 한번의 소오스/드레인 이온주입 과정이 필요하며, 건식 식각 방법을 적용하여 채널의 함몰 깊이를 조정할 수 있는 구조를 갖는다. 또한 제거가 가능한 질화막 측벽을 최종 질화막 측벽의 형성 이전에 선택적인 채널 이온주입을 위한 마스크로 활용하여 hot-carrier 현상을 감소시켰으며, 반전된 질화막 측벽을 사용하여 기존이 ESD 구조에서 문제시될 수 있는 자기-정렬의 문제를 해결하였다. 시뮬레이션 결과, 채널의 함몰 깊이 및 측벽의 넓이를 조정함으로써 충격이온화율(ⅠSUB/ID) 및 DIBL(Drain Induced Barrier Lowering) 현상을 효과적으로 감소시킬 수 있고, 유효채널 길이에 따라 차이가 있으나 두 번의 질화막 측벽을 사용함으로써 hot-carrier 현상이 개선될 수 있음을 확인하였다.

  • PDF

Theoretical Characterization of Binding Mode of Organosilicon Inhibitor with p38: Docking, MD Simulation and MM/GBSA Free Energy Approach

  • Gadhe, Changdev G.;Balupuri, Anand;Kothandan, Gugan;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2494-2504
    • /
    • 2014
  • P38 mitogen activated protein (MAP) kinase is an important anti-inflammatory drug target, which can be activated by responding to various stimuli such as stress and immune response. Based on the conformation of the conserved DFG loop (in or out), binding inhibitors are termed as type-I and II. Type-I inhibitors are ATP competitive, whereas type-II inhibitors bind in DFG-out conformation of allosteric pocket. It remains unclear that how these allosteric inhibitors stabilize the DFG-out conformation and interact. Organosilicon compounds provide unusual opportunity to enhance potency and diversity of drug molecules due to their low toxicity. However, very few examples have been reported to utilize this property. In this regard, we performed docking of an inhibitor (BIRB) and its silicon analog (Si-BIRB) in an allosteric binding pocket of p38. Further, molecular dynamics (MD) simulations were performed to study the dynamic behavior of the simulated complexes. The difference in the biological activity and mechanism of action of the simulated inhibitors could be explained based on the molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy per residue decomposition. MM/GBSA showed that biological activities were related with calculated binding free energy of inhibitors. Analyses of the per-residue decomposed energy indicated that van der Waals and non-polar interactions were predominant in the ligand-protein interactions. Further, crucial residues identified for hydrogen bond, salt bridge and hydrophobic interactions were Tyr35, Lys53, Glu71, Leu74, Leu75, Ile84, Met109, Leu167, Asp168 and Phe169. Our results indicate that stronger hydrophobic interaction of Si-BIRB with the binding site residues could be responsible for its greater binding affinity compared with BIRB.

연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구 (Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle)

  • 남궁혁준;문종훈;장석영;홍창욱;이경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

연료전지 수소재순환 이젝터 성능 해석 (Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle)

  • 남궁혁준;문종훈;장석영;홍창욱;이경훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Q-switched 레이저와 다중센서/단일채널 신호수집을 이용한 복합재 구조 음향방출 트레이닝 및 위치탐지 기법 개발 (Development of Acoustic Emission Training Technique and Localization Method using Q-switched Laser and Multiple Sensors/Single Channel Acquisition)

  • 최윤실;이정률
    • Composites Research
    • /
    • 제31권4호
    • /
    • pp.145-150
    • /
    • 2018
  • 항공우주산업에서 구조물의 수명연장과 경제적 측면에서의 효율적인 운용을 위해 다양한 구조건전성모니터링(Structural Health Monitoring, SHM) 기법들이 제시되어왔다. 금속재 구조물의 경우, 수분이나 염분 등에 의한 부식이나 쉽게 응력집중이 발생하는 타공, 노치, 볼트 등과 같은 위치에서의 균열이 주된 관심사였으나, 항공우주산업에서의 복합재 사용비율이 증가함에 따라 손상 메커니즘이 더욱 복잡한 복합재 구조물에 적용이 가능한 고도화된 SHM 시스템의 필요성이 강조되고 있다. 본 논문에서는 Q-switched 레이저와 다수의 압전센서를 이용한 복합재에서의 AE(Acoustic emission) 위치탐지 기법을 제시한다. 제시되는 기법은 10 mm 이내의 거리오차로 방출위치 탐지를 목표로 하며 복합재 구조에서 수행된 AE 모사실험 및 위치탐지 시도 결과를 제시하여 기법이 유효함을 증명한다.

열교환기의 나선형 관내 난류유동 수치해석 (Numerical analysis of turbulent flows in the helically coiled pipes of heat transfer)

  • 곽승현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권8호
    • /
    • pp.905-910
    • /
    • 2013
  • 열교환기의 나선형 튜브에 난류모형을 적용하여 유동해석을 수행하였다. 난류모형은 Spalart-Allmaras과 k-${\varepsilon}$이고 시뮬레이션에는 정렬격자를 적용하였다. 레이놀즈 수 영향을 규명하기 위하여 Navier-Stokes 방정식을 풀어 속도벡터, 압력, 잔차, 마찰계수를 재연하였다. 나선형튜브는 원심력을 증가하여 튜브의 바깥부분에 벽전단 응력을 크게 하였다. 열전도율과 마찰저항의 증가는 곡률에 기인하며 튜브의 내부방향으로는 벽 전단응력이 감소했다. 원심력은 유체의 에너지를 증가시켜서 바깥쪽으로 열전도율을 증가시켰고 이는 내부유동의 압력강하 및 관마찰계수가 상호 밀접한 관계가 있음을 규명하여 주었다. 본 수치결과는 검증을 위하여 타 계산에서 얻어진 마찰계수 결과와 비교하였다.

지하탄약고의 설계요소 및 폭발안전 연구 (Design consideration and explosion safety of underground ammunition storage facilities)

  • 김운영;이명재;김민석;김준엽;주효준
    • 한국터널지하공간학회 논문집
    • /
    • 제5권1호
    • /
    • pp.55-70
    • /
    • 2003
  • 지상형 탄약저장시설은 폭발시 인명과 재산의 피해가 크고 외부공격에 대하여 취약하므로 안전성, 부지확보 및 유지관리에서 유리한 지하탄약고의 개발이 절실하다. 본 연구에서는 폭발시 안전성 및 수불장비의 동선을 고려한 지하탄약고 시설배치와 방폭시설의 국내 설계사례를 소개하였다. ${\bigcirc}{\bigcirc}$지하탄약고는 경암지역에 불연속면의 영향이 적도록 주응력방향과 거의 평행하게 3개소의 저장격실이 배치되도록 설계되었다. 또한 국방부 폭발안전기준을 만족하는 안전거리를 확보하였고, 탄약 수불장비의 동선 시뮬레이션을 통해 시설배치의 적절성을 검증하였다. 방폭시설은 임의 저장격실의 우발적 폭발시 발생하는 최대 폭풍압을 산정하여 연쇄폭발이 발생하지 않도록 인접격실의 보호를 위한 방폭문 및 방폭밸브 등을 설계하였고. 폭풍압의 저감을 위한 병목장치, 파편함정 등의 시설은 구조해석을 통해 국방부 폭발물안전기준을 만족하도록 규격을 결정하였다.

  • PDF

The expanded LE Morgenstern-Price method for slope stability analysis based on a force-displacement coupled mode

  • Deng, Dong-ping;Lu, Kuan;Wen, Sha-sha;Li, Liang
    • Geomechanics and Engineering
    • /
    • 제23권4호
    • /
    • pp.313-325
    • /
    • 2020
  • Slope displacement and factor of safety (FOS) of a slope are two aspects that reflect the stability of a slope. However, the traditional limit equilibrium (LE) methods only give the result of the slope FOS and cannot be used to solve for the slope displacement. Therefore, developing a LE method to obtain the results of the slope FOS and slope displacement has significance for engineering applications. Based on a force-displacement coupled mode, this work expands the LE Morgenstern-Price (M-P) method. Except for the mechanical equilibrium conditions of a sliding body adopted in the traditional M-P method, the present method introduces a nonlinear model of the shear stress and shear displacement. Moreover, the energy equation satisfied by a sliding body under a small slope displacement is also applied. Therefore, the double solutions of the slope FOS and horizontal slope displacement are established. Furthermore, the flow chart for the expanded LE M-P method is given. By comparisons and analyses of slope examples, the present method has close results with previous research and numerical simulation methods, thus verifying the feasibility of the present method. Thereafter, from the parametric analysis, the following conclusions are obtained: (1) the shear displacement parameters of the soil affect the horizontal slope displacement but have little effect on the slope FOS; and (2) the curves of the horizontal slope displacement vs. the minimum slope FOS could be fitted by a hyperbolic model, which would be beneficial to obtain the horizontal slope displacement for the slope in the critical state.

CFD Study on the Influence of Atmospheric Stability on Near-field Pollutant Dispersion from Rooftop Emissions

  • Jeong, Sang Jin;Kim, A Ra
    • Asian Journal of Atmospheric Environment
    • /
    • 제12권1호
    • /
    • pp.47-58
    • /
    • 2018
  • The aim of this work is to investigate the effect of atmospheric stability on near-field pollutant dispersion from rooftop emissions of a single cubic building using computational fluid dynamics (CFD). This paper used the shear stress transport (here after SST) k-${\omega}$ model for predicting the flow and pollutant dispersion around an isolated cubic building. CFD simulations were performed with two emission rates and six atmospheric stability conditions. The results of the simulations were compared with the data from wind tunnel experiments and the result of simulations obtained by previous studies in neutral atmospheric condition. The results indicate that the reattachment length on the roof ($X_R$) obtained by computations show good agreement with the experimental results. However, the reattachment length of the rooftop of the building ($X_F$) is greatly overestimated compared to the findings of wind tunnel test. The result also shows that the general distribution of dimensionless concentration given by SST k-${\omega}$ at the side and leeward wall surfaces is similar to that of the experiment. In unstable conditions, the length of the rooftop cavity was decreased. In stable conditions, the horizontal velocity in the lower part around the building was increased and the vertical velocity around the building was decreased. Stratification increased the horizontal cavity length and width near surface and unstable stratification decreased the horizontal cavity length and width near surface. Maintained stability increases the lateral spread of the plume on the leeward surface. The concentration levels close to the ground's surface under stable conditions were higher than under unstable and neutral conditions.