• Title/Summary/Keyword: stress simulation

Search Result 2,246, Processing Time 0.03 seconds

Characteristics of Parameters for the Distribution of fatigue Crack Growth Lives wider Constant Stress Intensity factor Control (일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성)

  • 김선진
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • The characteristics of the parameters for the probability distribution of fatigue crack growth life, using the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length equals the number of cycle curves that are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratios of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Wiubull,, showing a slight dependence on specimen thickness and stress intensity level. The shape parameter, $\alpha$, does not show the dependency of thickness and stress intensity level, but the scale parameter, $\beta$, and location parameter, ${\gamma}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

FINITE ELEMENT ANALYSIS AND MEASUREMENT ON THE RELEASE OF RESIDUAL STRESS AND NON-LINEAR BEHAVIOR IN WELDMENTS BY MECHANICAL LOADING(I) - EXPERIMENTAL EXAMINATION -

  • Jang, Kyoung-Bok;Yoon, Hun-Sung;Cho, Sang-Myoung
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.372-377
    • /
    • 2002
  • Residual stress by welding should be reduced because that decreases the reliability on strength of welded structure. The reason is that the total stiffness of structure decreases by non-linear behavior of weldment under external load. The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure for steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. This simulation model should be established on the based of variable and accurate measurement data. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test under variable load was performed and the proper degree of stress relaxation was measured by sectioning technique using strain gauge.

  • PDF

Finite Element Analysis and Measurement on the Release of Residual Stress and Non-linear Behavior in Weldments by Mechanical Loading(I) -Experimental Examination-

  • Jang, K.B.;Yoon, H.S.;Cho, S.M.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.40-44
    • /
    • 2002
  • Residual stress by welding should be reduced because that decreases the reliability on strength of welded structure. The reason is that the total stiffness of structure decreases by non-linear behavior of weldment under external load. The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure for steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. This simulation model should be established on the based of variable and accurate measurement data. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test under variable load was performed and the proper degree of stress relaxation was measured by sectioning technique using strain gauge.

  • PDF

Characteristics of Parameters for the Distribution of Fatigue Crack Growth Lives under Constant Stress Intensity Factor Control (일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성에 관하여)

  • Kim, Seon-Jin;Kim, Young-Sik;Jeong, Hyeon-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.301-306
    • /
    • 2002
  • The characteristics of parameters for the probability distribution of fatigue crack growth lives by the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length - the number of cycles curves are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratio of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth lives seems to follow the 3-parameter Wiubull and shows a slight dependence on specimen thickness and stress intensity level. The shape parameter, ${\alpha}$, does not show the dependency of thickness and stress intensity level, but the scale parameter, ${\beta}$, and location parameter, ${\upsilon}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

  • PDF

The Impact of Climate Change on the Dynamics of Soil Water and Plant Water Stress (토양수분과 식생 스트레스 동역학에 기후변화가 미치는 영향)

  • Han, Su-Hee;Kim, Sang-Dan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.52-56
    • /
    • 2009
  • In this study a dynamic modeling scheme is presented to derive the probabilistic structure of soil water and plant water stress when subject to stochastic precipitation conditions. The newly developed model has the form of the Fokker-Planck equation, and its applicability as a model for the probabilistic evolution of the soil water and plant water stress is investigated under climate change scenarios. This model is based on the cumulant expansion theory, and has the advantage of providing the probabilistic solution in the form of probability distribution function (PDF), from which one can obtain the ensemble average behavior of the dynamics. The simulation result of soil water confirms that the proposed soil water model can properly reproduce the results obtained from observations, and it also proves that the soil water behaves with consistent cycle based on the precipitation pattern. The plant water stress simulation, also, shows two different PDF patterns according to the precipitation. Moreover, with all the simulation results with climate change scenarios, it can be concluded that the future soil water and plant water stress dynamics will differently behave with different climate change scenarios.

  • PDF

Hemodynamic Stress Changes due to Compensatory Remodelling of Stenosed Coronary Artery (협착이 발생된 관상동맥의 보상적 재형성에 따른 혈류역학적 응력변화)

  • Cho, Min-Tae;Suh, Sang-Ho;Lee, Byoung-Kwon;Kwon, Hyuck-Moon;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.529-532
    • /
    • 2001
  • The purposes of the present study are to investigate hemodynamic characteristics and to define shear-sensitive remodeling in the stenosed coronary models. Two models for the compensatory remodelling used for this research are a pre-stenotic dilation and a post-stenotic dilation models for the computer simulation. The peak wall shear stress on the post-stenotic model is higher than that of the pre-stenotic model. Two recirculation zones are generated in the pre-stenotic model, and the zones in the pre-stenotic model are smaller than those in the post-stenotic model. Variation of the wall shear stress in the pre-stenotic model is lower than that in the post-stenotic model. In computer simulation with the post-stenotic model, higher temporal and spatial shear fluctuation and stress suggested shear-sensitive remodeling. Shear-sensitive remodeling may be associated with the increased risk of plaque rupture, the underlying cause of acute coronary syndromes, and sudden cardiac death.

  • PDF

Forging Die Design using Ceramic Insert (세라믹 인서트를 이용한 단조 금형설계)

  • 권혁홍
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2000
  • The use of ceramic inserts in steel forging tools offers significant technical and economic advantages over other materi-als of manufacture. These potential benefits can however only be realised by optimal design of the tools so that the ceramic insert are not subjected to stresses that led to their premature failure. In this paper the data on loading of the tools is determined from a commercial forging simulation package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite-element die-stress analysis. Process simulation and stress analysis are thus combined during the design and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic detections generated in shrink fitting the die inserts and that caused by the stresses generated in the forging process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads. Simulation results have been validated as a result of experimental investigation. Laboratory tests on ceramic insert dies have verified the superior performance of the Zirconia and Silicon Nitride ceramic insert in order to prolong maintenance life.

  • PDF

Study on Dynamic Characteristics of 4-Step Drainage Tower Based on Multi-body Dynamics Simulation (다물체 동역학 시뮬레이션 기반 4단 배수 타워의 동적 특성 연구)

  • Seungwoon Park;Yeong Hwan Han;Ho Young Jeon;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.9-16
    • /
    • 2023
  • This paper analyzed a drainage tower used to drain water in flooded areas. Multi-body dynamics simulation was used to analyze the dynamic behavior of the drainage tower. Structural analysis, flexible-body dynamic analysis, and rigid body dynamic analysis were done to study the maximum Von-Mises stress of the drainage tower. The results showed that the maximum Von-Mises stress occurs at the turn table, and it decreases when the angle of the boom is increased. Also, the rate of the change of angle affects the maximum stress so that the maximum stress changes more when the angular velocity of the boom increases. Based on the rigid body dynamic analysis and the theoretical analysis results, the centrifugal force from the angular velocity makes the difference in the maximum stress at the turn table because of the difference in their direction. Consequently, it was concluded that the centrifugal force should be considered when designing construction machinerythat can rotate.

Reproduction of Cyclic Triaxial Behavior of Unsaturated Soil using Element Simulation (요소 시뮬레이션에 의한 불포화토의 반복삼축거동 재현)

  • Lee, Chungwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.5-14
    • /
    • 2015
  • Suction affects the unsaturated soil as the negative pore pressure, and leads to increases of the yield stress and the plastic shear stiffness of the soil skeleton due to the growth in interparticle stress. Hence, in this study, in order to account for these effects of suction under the dynamic loading condition such as the earthquake, the element simulation of the cyclic triaxial test using induced stress-strain relation based on cyclic elasto-plastic constitutive model extended for unsaturated soil considering the $1^{st}$ and the $2^{nd}$ yield functions was conducted. Through the stress path, stress-strain relation and relation between volumetric strain and axial strain, it was seen in all the cases that the simulation results demonstrated a good agreement with the experimental results. It is expected that the results of this study possibly contribute to the accuracy improvement on the prediction of unsaturated soil behavior under the dynamic loading condition.

Dispersion-corrected Finite Element Method for the Stress Wave Propagation (응력파 전파 수치모의를 위한 유한요소법의 분산오차 저감에 관한 연구)

  • Hwang, In-Ho;Choi, Don-Hee;Hong, Sang-Hyun;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.39-44
    • /
    • 2008
  • Stress wave propagation plays an important role in many engineering problems for reducing industrial noise and vibrations. In this paper, the dispersion-corrected finite element model is proposed for reducing the dispersion error in simulation of stress wave propagation. At eliminating the numerical dispersion error arising from the numerical simulation of stress wave propagation, numerical dispersion characteristics of the wave equation based finite element model are analyzed and some dispersion control scheme are proposed. The validity of the dispersion correction techniques is demonstrated by comparing the numerical solutions obtained using the present techniques.

  • PDF