• Title/Summary/Keyword: stress sensing

Search Result 216, Processing Time 0.026 seconds

System Design and H/W Development of the Residual Stress Measurement for Ferromagnetic thin Sheet (강자성 박판소재의 잔류응력 측정 시스템의 설계 및 제작)

  • 김상원;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.2
    • /
    • pp.50-57
    • /
    • 2001
  • Magnetic inductive probe was designed and assembled for sensing the residual stress developed in the ferromagnetic thin sheet. The residual stress measurement system with this probe could resolve the residual stresses developed in the sheet in terms of principal stress orientation, and magnitude of the principal stress. It was consumed that the obtained probe output voltage from the qualified ferromagnetic Fe-42Ni lead frame sheet and quality-rejected sheet is effectively determined using the developed device. The lead frame sheet which has accumulated a high level of residual stress always showed a distinctive stress distribution and magnitude compared with those of qualified lead frame sheet. Those differences were well resolved as functions of input current or used frequency.

  • PDF

Interfacial Properties and Stress-Cure Sensing of Single-Shape Memory Alloy (SMA) Fiber/Epoxy Composites using Electro-Micromechanical Techniques (미세역학적 시험법을 이용한 단-섬유 형태 형상기억합금/에폭시 복합재료의 계면특성 및 응력-경화 감지능)

  • Jang, Jung-Hoon;Kim, Pyung-Gee;Wang, Zuo-Jia;Lee, Sang-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.20-26
    • /
    • 2008
  • It is well know that the structure of shape memory alloy (SMA) can change from martensite austenite by either temperature or stress. Due to their inherent shape recovery properties, SMA fiber can be used such as for stress or cure-monitoring sensor or actuator, during applied stress or temperature. Incomplete superelasticity was observed as the stress hysteresis at stress-strain curve under cyclic loading test and temperature change. Superelasticity behavior was observed for the single-SMA fiber/epoxy composites under cyclic mechanical loading at stress-strain curve. SMA fiber or epoxy embedded SMA fiber composite exhibited the decreased interfacial properties due to the cyclic loading and thus reduced shape memory performance. Rigid epoxy and the changed interfacial adhesion between SMA fiber and epoxy by the surface treatment on SMA fiber exhibited similar incomplete superelastic trend. Epoxy embedded single SMA fiber exhibited the incomplete recovery during cure process by remaining residual heat and thus occurring residual stress in single SMA fiber/epoxy composite.

  • PDF

The utilities of U-shape EM sensor in stress monitoring

  • Wang, Guodun;Wang, Ming L.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.291-302
    • /
    • 2004
  • In this paper, load monitoring technologies using U-shape Magnetoelastic (EM or ME) sensors have been exploited systemically for the first time. The steel rod to be tested is the Japan 7 mm piano steel rod. The load dependence of the magnetic properties of the piano steel rod was manifested. Two experimental designs of U-shape magnetoelastic sensors were introduced, one with double pick-up concentric coils wound on the rod to be tested, the other with pick-up coil on one yoke foot. The former design is used to derive the correlation of the relative permeability with elastic tension, while the latter is aimed to reflect the stress induced magnetic flux variation along the magnetic circuit. Magnetostatic simulations provide interpretations for the yoke foot sensing technology. Tests with double pick-up coils indicate that under proper working points (primary voltages), the relative permeability varies linearly with the axial load for the Japan 7 mm piano steel rod. Tests with pick-up coil on the yoke foot show that the integrated sensing voltage changes quadratically with the load, and error is more acceptable when the working point is high enough.

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers

  • Ruan, Jiabiao;Zhang, Zhimin;Wang, Tao;Li, Yourong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.281-294
    • /
    • 2015
  • Bolted joint connection is the most commonly used connection element in structures and devices. The loosening due to external dynamic loads cannot be observed and measured easily and may cause catastrophic loss especially in an extreme requirement and/or environment. In this paper, an innovative Real-time Cross-Correlation Method (RCCM) for monitoring of the bolted joint loosening was proposed. We apply time reversal process on stress wave propagation to obtain correlation signal. The correlation signal's peak amplitude represents the cross-correlation between the loosening state and the baseline working state; therefore, it can detect the state of loosening. Since the bolt states are uncorrelated with noise, the peak amplitude will not be affected by noise and disturbance while it increases SNR level and increases the measured signals' reliability. The correlation process is carried out online through physical wave propagation without any other post offline complicated analyses and calculations. We implemented the proposed RCCM on a single bolt/nut joint experimental device to quantitatively detect the loosening states successfully. After that we implemented the proposed method on a real large structure (reaction wall) with multiple bolted joint connections. Loosening indexes were built for both experiments to indicate the loosening states. Finally, we demonstrated the proposed method's great anti-noise and/or disturbance ability. In the instrumentation, we simply mounted Lead Zirconium Titanate (PZT) patches on the device/structure surface without any modifications of the bolted connection. The low-cost PZTs used as actuators and sensors for active sensing are easily extended to a sensing network for large scale bolted joint network monitoring.

Grouting compactness monitoring of concrete-filled steel tube arch bridge model using piezoceramic-based transducers

  • Feng, Qian;Kong, Qingzhao;Tan, Jie;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.175-180
    • /
    • 2017
  • The load-carrying capacity and structural behavior of concrete-filled steel tube (CFST) structures is highly influenced by the grouting compactness in the steel tube. Due to the invisibility of the grout in the steel tube, monitoring of the grouting progress in such a structure is still a challenge. This paper develops an active sensing approach with combined piezoceramic-based smart aggregates (SA) and piezoceramic patches to monitor the grouting compactness of CFST bridge structure. A small-scale steel specimen was designed and fabricated to simulate CFST bridge structure in this research. Before casting, four SAs and two piezoceramic patches were installed in the pre-determined locations of the specimen. In the active sensing approach, selected SAs were utilized as actuators to generate designed stress waves, which were detected by other SAs or piezoceramic patch sensors. Since concrete functions as a wave conduit, the stress wave response can be only detected when the wave path between the actuator and the sensor is filled with concrete. For the sake of monitoring the grouting progress, the steel tube specimen was grouted in four stages, and each stage held three days for cement drying. Experimental results show that the received sensor signals in time domain clearly indicate the change of the signal amplitude before and after the wave path is filled with concrete. Further, a wavelet packet-based energy index matrix (WPEIM) was developed to compute signal energy of the received signals. The computed signal energies of the sensors shown in the WPEIM demonstrate the feasibility of the proposed method in the monitoring of the grouting progress.

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites using Electro- Micromechanical Technique and Acoustic Emission (전기적-미세역학 시험법과 음향 방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴 손상 감지능)

  • 김대식;박종만;김태욱
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.285-290
    • /
    • 2004
  • Nondestructive damage sensitivity of carbon nanotube(CNT) and nanofiber (CNF)/epoxy composites with their adding contents was investigated using electro-micromechanical technique. Carbon black (CB) was used only for the comparison with CNT and CNF. The fracture of carbon fiber was detected by acoustic emission (AE), which was correlated to the change in electrical resistance, ΔR under double-matrix composites (DMC) test. Stress sensing on carbon nanocomposites was performed by electro-pullout test under uniform cyclic loading. At the same volume fraction, the damage sensitivity for fiber fracture, matrix deformation and stress sensing were highest for CNT/epoxy composite, whereas for CB/epoxy composite they were the lowest among three carbon nanomaterials (CNMs). Damage sensitivity was correlated with morphological observation of carbon nanocomposites. Homogeneous dispersion among CNMs could be keying parameters for better damage monitoring. In this study, damage sensing of carbon nanocomposites could be evaluated well nondestructively by the electrical resistance measurement with AE.

Mechanical and Electrical Properties of Self-sensing Grout Material with a High-Volume Ultrafine Fly Ash Replacement (초고분말 플라이 애시를 다량 치환한 자기감지형 그라우트재의 역학적 및 전기적 특성)

  • Lee, Gun-Cheol;Kim, Young-Min;Im, Geon-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.215-226
    • /
    • 2024
  • This study presents an experimental investigation into the performance of self-sensing grout formulated with a high volume of ultra-fine fly ash(UHFA). To explore the potential benefits of alternative cementitious materials, the research examined the effect of substituting UHFA with equal parts of blast furnace slag(BFS) fine powder. Both UHFA and BFS are byproducts generated in significant quantities by industrial processes. The evaluation focused on the fresh properties of the grout, including its flow characteristics, as well as the hardened properties such as compressive strength, dimensional stability(length change rate), and electrical properties. The experimental results demonstrated that incorporating UHFA resulted in a substantial reduction in the plastic viscosity of the grout, translating to improved flowability. Additionally, the compressive strength of the UHFA-modified grout surpassed that of the reference grout(without UHFA substitution) at all curing ages investigated. Interestingly, the electrical characteristics, as indicated by the relationships between FCR-stress and FCR-strain, exhibited similar trends for both grout mixtures.

Transcriptional Induction of a Carbon Starvation Gene during Other Starvation and Stress Challenges in Pseudomonas putida MK1: A Role of a Carbon Starvation Gene in General Starvation and Stress Responses

  • Chitra, Subramanian;Lee, Ho-Sa;Kim, Youngjun
    • Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.141-147
    • /
    • 1999
  • Thirteen transcriptionally-fused carbon starvation mutants, derived from Pseudomonas putida ATCC 12633, were analyzed for their survivability and transcriptional induction profiles upon carbon starvation. One of these mutants, MK114, which exhibited the lowest survivability and the highest induction rate, was selected and further examined under different starvation (nitrogen and phosphate) and stress (osmolarity, H2O2, salts, alcohol, and heat) conditions. Under all tested conditions MK114 induced ${\beta}$-galactosidase activity, implying that the interrupted gene (cst114) is a general starvation and stress response gene. The rate of induction ranged from 2.6-fold for phosphate starvation to 3.7-fold for osmotic shock. The mini-Tn5 flanking DNA was cloned from the chromosome of MK114. The cloned DNA fragment exhibited carbon starvation activity, indicating that this fragment contains a carbon starvation-related promoter region. This region was partially sequenced. Possible physiological roles of Cst114 in a carbon sensing mechanism and in other stress responses are also discussed.

  • PDF

Effect of Stress on Current-Voltage Characteristics of ZnO Based Ceramics

  • Jung Ju-Yong;Kim Yeong-Cheol;Seo Hwa-Il;Chung Dong-Teak;Kim Young-Jung;Min Joon-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.4 s.13
    • /
    • pp.1-4
    • /
    • 2005
  • The chemical composition and uniaxial compressive stress are varied to observe their effect on the current-voltage characteristics of ZnO based ceramics. The variation of chemical composition produces two kinds of ceramics showing ohmic and nonohmic current-voltage characteristics. The current at a fixed voltage increased with the increase of the compressive stress for both ohmic and nonohmic ceramics. Ceramics showing nonohmic behavior exhibit better reversible return of current-voltage curve when the applied compressive stress is removed from the ceramics than those showing ohmic behavior do. We found an appropriate chemical composition showing linear relation between current and stress at a fixed voltage. The ceramic materials with an appropriate chemical composition can be used as a potential sensing material in pressure sensors.

  • PDF