• Title/Summary/Keyword: stress relaxation strength

Search Result 82, Processing Time 0.02 seconds

A Study on the Interfacial Bonding in AlN Ceramics/Metals Joints: I. Residual Stress Analysis of AlN/Cu and AlN/W Joints Produced by Active-Metal Brazing (AlN 세라믹스와 금속간 계면접합에 관한 연구 : I. AlN/Cu 및 AlN/W 활성금속브레이징 접합체의 잔류응력 해석)

  • Park, Sung-Gye;Lee, Seung-Hae;Kim, Ji-Soon;You, Hee;Yum, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.962-969
    • /
    • 1999
  • Elastic and elasto-plastic stress analyses of AlN/Cu and AlN/W pints produced by active-metal brazing method using Ag-Cu-Ti insert-metal were performed with use of Finite-Element-Method(FEM). The results of stress analyses were compared with those from the pint strength tests and the observations of fracture behaviors. It was shown that a remarkably larger maximum principal stress is built in the AlN/Cu pint compared to the A1N/ W joint. Especially, the stress concentration with tensile component was confirmed at the free surface close to the bonded interface of AlN/Cu. The elasto-plastic analysis under consideration of stress relaxation effect of Ag-Cu-Ti insert possessing a so-called 'soft-metal effect' showed that the insert leads to a lowering of maximum principal stress in AlNiCu pint, even though an increase of the insert thickness above 100$\mu\textrm{m}$ could not bring its further decrease. The maximum pint strengths measured by shear test were 52 and 108 MPa for AlNiCu and AlN/W pints. respectively. Typical fractures of AlN/Cu pints occurred in a form of 'dome' which initiated from the free surface of AlN close to the bonded interface and proceeded towards the AlN inside forming a large angle. AlN/W pints were usually fractured at AlN side along the interface of AlN/insert-metal.

  • PDF

A Study on the Interfacial Bonding between AlN Ceramics and Metals: II. Effect of Mo Interlayer on the Residual Stress of AlN/Cu Joint (AlN 세라믹스와 금속간 계면접합에 관한 연구: II. AlN/Cu 접합체의 잔류응력에 미치는 Mo 중간재의 영향)

  • Park, Sung-Gye;Kim, Ji-Soon;You, Hee;Yum, Young-Jin;Kwon, Young-Soon
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.970-977
    • /
    • 1999
  • Effect of Mo interlayer on the relaxation of residual stress in AlN/Cu pint bonded by active-metal brazing method was investigated. The stress analyses by finite-element-method, the measurement of pint strength and the observation of fracture surface were carried out and their results were compared with each other. From the results of stress analysis it is confirmed that a Mo interlayer led to a shift of maximum stress concentration site from AlN/insert-metal interface$\rightarro$ insert-metal/Mo$\rightarro$Mo interlayer. Additionally, with increase of the Mo interlayer thickness the stress concentration with tensile component was separately built both at the interface of Cu/Mo and AlN/Mo. whereby the residual stress in the free surface of AlN close to the bonded interface was drastically reduced. The AlN/Mo/Cu pints with Mo interlayer thickness of above 400$\mu\textrm{m}$ showed the strengths higher than 200 MPa. upto max. 275 MPa, while the AlN/Cu pint only max. 52 MPa.

  • PDF

A Study on the Structural Performance of Post Tensioned Concrete Beam and Slab Subjected to High Temperature (고온을 받은 포스트텐션 콘크리트 보와 슬래브의 구조성능 연구)

  • Choi, Kwang-Ho;Lee, Joong-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.217-223
    • /
    • 2017
  • This research was planned to evaluate the structural performance of post tensioned(PT) concrete member subjected to fire. Prime objective was to suggest some techniques to evaluate the performance of post tensioned concrete beam and slab exposed to high temperature through experiment. To accomplish this objective, the following two scopes have been proceeded to verify the strength reducing ratio of strands and find out the difference of resisting force at the PT concrete members exposed to high temperature through the fire test. The properties of prestressing steel(tendon) in PT concrete beam and slab under variable temperatures were reviewed. The test of this study was shown that stress relaxation occurred at high temperature, and some restoration of tensional force appeared as it got cooling down. The residual tension of the post tensioned beams at 4 hours after reaching the target temperature were 70% at $400^{\circ}C$, 10% at $600^{\circ}C$ and 2% at $800^{\circ}C$. The post tensioned slabs were 94% at $400^{\circ}C$, 84.5% at $600^{\circ}C$ and 62% at $800^{\circ}C$. The reason why the residual tension loss of the post tensioned slab was relatively small was considered to be that the slab was exposed just one side to high temperature and the strength of the strand was restored larger than that of beam. Also, it was confirmed that the post tensioned member inevitably experienced the loss of strength by fire damage, and restoration design of the member should be required to compensate for the value as much as lost strength.

A Study on the Numerical Analysis of A NATM Tunnel with Consideration of Construction Procedure and Field Measurement (시공과정 및 현장계측을 고려한 NATM 터널의 수치해석적 연구)

  • Park, Choon-Sik;Kang, Man-Ho
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • In order to investigate the tendency of general displacements and behaviors with respect to each construction process as well as the applicability of numerical analysis schemes, this research has focused on not only analyzing a variety of field observations made in a NATM tunnel, such as displacement of top and side, stress of shotcrete and axial strength of rock bolt, but also carrying out a series of numerical analyses. It was established from the investigation that the 2-dimensional continuum numerical analysis was the one which could more accurately predict displacement of crown and side in the area of one step excavation (patten, P1-P3), while the 2-dimensional discontinuum analysis was the most suitable scheme to study that of two step excavation (patten, P4-P6). In addition, the 2-dimensional continuum analysis enabled to appropriately predict the axial strength of rock bolt and stress of shotcrete in all the area of the tunnel. Finally, it has been possible to conclude from the study that the 3-dimensional continuum analysis should be applied to inspect the behavior and tendency with respect to each stage of the construction as well as in the case of joints, such as large turnouts where relaxation loads in both of horizontal and vertical direction are piled up.

A Study on Stress-Strain Behaviour of Geotube Structure Filled with Silty Sand Under Low Confining Pressure by Triaxial Compression Test (실트질 모래가 충진된 지오튜브 구조체의 저 등방조건에서 삼축압축시험에 의한 응력-변위 거동 연구)

  • Hyeong-Joo, Kim;Tae-Woong, Park;Ki-Hong, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.69-78
    • /
    • 2022
  • Geotextile tubes are widely used to prevent erosion in coastal areas and to replace the backfill for shore slopes in the reclamation of land using dredged soil. In this study, The triaxial confining pressures were chosen as 10kPa, 50kPa, or 100kPa for the specimens reinforced with geotextile considering the condition in the site. The strain behavior under various compressive stresses was then identified. At strains 0% to 7%, the stress-strain behavior was the same due to the effect of initial strain hardening, in which the force was exerted according to the relaxation of the geotextile regardless of the confining pressure (≤100kPa). At strains of 7% or more, the specimen with the small confining pressure had smaller deformation under load, which increases the tensile resistance provided by the reinforcing geotextile. Brittle fracture was then observed due to strain softening and the deviator stress abruptly decreased. This is different from the phenomenon in which the shear strength increases as the confining pressure increases in general triaxial compression tests. In the geoxtile-confined tests, geotextiles are primarily subjected to tensile displacement. Thereafter, the modulus of elasticity increases rapidly, which exhibits the elastic behavior of the geotextile.

A study on Crack Healing of Various Glassy Polymers (part I) -theoretical modeling- (유리질 중합체의 균열 Healing에 관한 연구 (제1보) -이론 모델링-)

  • Lee, Ouk-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.40-49
    • /
    • 1986
  • Crack, craze and void are common defects which may be found in the bulk of polymeric materials such as either themoplastics or thermosets. The healing phenomena, autohesion, of these defects are known to be a intrinsic material property of various polymeric materials. However, only a few experimental and theoretical investigations on crack, void and craze healing phenomena for various polymeric materials have been reported up to date [1, 2, 3]. This may be partly due to the complications of healing processes and lacking of appropriate theoretical developments. Recently, some investigators have been urged to study the healing phenomena of various polymenic materials since the significance of the use of polymer based alloys or composites has been raised in terms of specific strength and energy saving. In the earlier published reports [1, 2, 3, 4], the crack and void healing velocity, healing toughness and some other healing mechanical and physical properties were measured experimentally and compared with predicted values by utilizing a simple model such as the reptation model under some resonable assumptions. It seems, however, that the general acceptance of the proposed modeling analyses is yet open question. The crack healing processes seem to be complicate and highly dependent on the state of virgin material in terms of mechanical and physical properties. Furthermore, it is also strongly dependent on the histories of crack, craze and void development including fracture suface morphology, the shape of void and the degree of disentanglement of fibril in the craze. The rate of crack healing may be a function of environmental factors such as healing temperature, time and pressure which gives different contact configurations between two separated surfaces. It seems to be reasonable to assume that the crack healing processes may be divided in several distinguished steps like stress relaxation with molecular chain arrangement, surface contact (wetting), inter- diffusion process and com;oete healing (to obtain the original strength). In this context, it is likely that we no longer have to accept the limitation of cumulative damage theories and fatigue life if it is probable to remove the defects such as crack, craze and void and to restore the original strength of polymers or polymer based compowites by suitable choice of healing histories and methods. In this paper, we wish to present a very simple and intuitive theoretical model for the prediction of healed fracture toughness of cracked or defective polymeric components. The central idea of this investigation, thus, may be the modeling of behavior of chain molecules under healing conditions including the effects of chain scission on the healing processes. The validity of this proposed model will be studied by making comparisons between theoretically predicted values and experimentally determined results in near future and will be reported elsewhere.

  • PDF

A study on the development and field application of SP-Rockbolt with high-strength steel pipe (고강도 강관을 적용한 SP-록볼트 개발 및 현장 적용을 위한 연구)

  • Shin, Hyunkang;Jung, Hyuksang;Ahn, DongWook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.651-668
    • /
    • 2017
  • For initial stability of the tunnel, the primary support, Shotcrete and rockbolt shall be placed in the most appropriate time. This is because the role of such support plays a vital role in long-term and short-term tunnel stability. In this study, the rock bolt is an important supporting system that receives the external pressure generated by the stress relaxation during tunnel excavation as axial force and transmits it to the shotcrete on the tunnel excavation surface. Until now, most of the materials of rock bolts have been used in the field, but there have been many problems such as uncertain quality of Chinese materials entering the market, poor packing due to falling down of rock bolts when filled with mortar, and corrosion due to water. Therefore, in this study, we have developed a high strength steel pipe rock bolt using Autobeam material to solve and improve various problems of existing rock bolts. In order to evaluate the performance of the developed bolt, field tests were carried out and the existing mortar filler in order to improve the performance of the rock bolt, the design and construction criteria were studied and the results were included in this paper.

New Generation of Lead Free Paste Development

  • Albrecht Hans Juergen;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.233-241
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces strictly related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

New Generation of Lead Free Solder Spheres 'Landal - Seal'

  • Walter H.;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.211-219
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces stric시y related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials. In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

Development of Steel Pipe Attached PHC Piles for Increasing Base Load Capacity of Bored Pre-cast Piles (매입말뚝의 선단지지력 증대를 위한 강관 부착 PHC파일 개발)

  • Paik, Kyu-Ho;Yang, Hee-Jeong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.53-63
    • /
    • 2013
  • Bored pre-cast piles using PHC piles is widely used in foundation of building structures constructed in urban areas because noise and vibration due to pile installation are low. However, since slime is formed at the base of borehole and the density of bearing stratum surrounding the base of borehole is decreased due to stress relaxation in drilling process of bored pre-cast pile method, the base load capacity of bored pre-cast piles is very low compared to the strength of bearing stratum. In this study, a new type of PHC pile, which short steel pipe with the same diameter as the PHC pile is attached to the pile tip, is developed to increase the base load capacity of bored pre-cast piles. In order to check the effect of the use of new PHC pile on the base load capacity of bored pre-cast piles, field pile load tests are performed for bored pre-cast piles using the new and existing PHC piles. Results of the pile load tests show that the new PHC pile gives higher base load capacity to bored pre-cast piles than the existing PHC pile, since the tip of new PHC pile is penetrated to undisturbed bearing stratum passing through the slime at the base of borehole and the loosened bearing stratum under the slime by pile driving using light hammer.