• 제목/요약/키워드: stress of unbonded tendons

검색결과 40건 처리시간 0.022초

규격별 비부착 긴장재의 극한응력식에 대한 비교 연구 (A Comparitive Study on the Ultimate Tendon Stress of Unbonded Tendon According to Various Codes)

  • 유성원;서정인
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.501-506
    • /
    • 2002
  • The unbonded prestressed concrete(PSC) members exhibit very different structural behavior from that of bonded PSC members because of having different tendon stress increment. Recently, AASHTO changed the provision of ultimate tendon stress with unbonded tendons, because some researches tried to improve the provision of ultimate tendon stress with unbonded tendons. The purpose of the present study is to compare various Codes with the ultimate failure stresses of prestressing(PS) steels for the unbonded PSC members. To this end, Some national Codes have been collected and analyzed. A series of major influencing variables have been included in the analysis. It was found that the span-depth ratio, neutral axis depth-effective depth ratio, concrete compressive strength, effective prestress, and prestressing steel ratio have great influence on the ultimate failure stress of PS steel in unbonded PSC members. The Comparison indicates that existing formulas including ACI and domestic Code's equations shows some unwarranties. The present study allows more realistic analysis and design of prestressed concrete structures with internal unbonded tendons.

  • PDF

외적 비부착강선을 가진 프리스트레스트 콘크리트 보의 극한휨거동 해석 (Study on the Ultimate Flexural Behavior Analysis of Prestressed Concrete Beam with External Unbonded Tendons)

  • 오병환;유성원;신정성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.662-667
    • /
    • 1998
  • Recently, the using PSC with external unbonded tendons is increased. However, the behavior of external unbonded tendons is different with that of bonded internal tendon at ultimate state by compatibility condition, the slip with friction at deviator and the change of tendon eccentricity e.t.c., So, the analytical research considered the effect of these inherent characters was performed and the tendency of external unbonded tendons was estimated by numerical examples. By the analytical results, load-deflection relationship and stress increment of external unbonded tendons were similar to those of internal bonded tendon at initial elastic behavior state. Those characters were, however, smaller than those character of internal bonded tendons. For external unbonded tendons, if the 1 deviator which is positioned at maximum moment point and more 2 deviators which are position between maximum moment point and support are existed, the flexural behavior is similar to internal bonded tendons.

  • PDF

비부착 긴장재를 갖는 프리스트레스트 콘크리트 보에서 긴장재 응력의 과대평가 (Overestimation of Ultimate Tendon Stress in a Prestressed Concrete Beam with Unbonded Tendons)

  • 이종윤;임재형;문정호;신경재
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.73-81
    • /
    • 1999
  • The present study is to examine the ACI code equations for computing the unbonded tendon stress at flexural failure of prestressed beams. The equations examined for their validity are Eq. 18-4 and Eq. 18-5 of the ACI 318-95. Since the possibility of overestimation was expected with the equations, a numerical study, first, was carried out with influential variables included. From this study, it was found that amount of reinforcements, effective prestress, location of tendons, and loading type may affect the overestimation of the unbonded tendon stress. Then, an experimental study was carried out with those variables. A total of 8 specimens was tested to prove the theoretical findings as well as the effect of those variables. As a result. it was proven that the ACI Code equations can overestimate significantly the unbonded tendon stress for certain cases.

Modeling of post-tensioned one-way and two-way slabs with unbonded tendons

  • Kim, Uksun;Huang, Yu;Chakrabarti, Pinaki R.;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • 제13권5호
    • /
    • pp.587-601
    • /
    • 2014
  • A sophisticated finite element modeling approach is proposed to simulate unbonded post-tensioned concrete slabs. Particularly, finite element contact formulation was employed to simulate the sliding behavior of unbonded tendons. The contact formulation along with other discretizing schemes was selected to assemble the post-tensioned concrete system. Three previously tested unbonded post-tensioned two-way and one-way slabs with different reinforcement configurations and boundary conditions were modeled. Numerical results were compared against experimental data in terms of global pressure-deflection relationship, stiffness degradation, cracking pattern, and stress variation in unbonded tendons. All comparisons indicate a very good agreement between the simulations and experiments. The exercise of model validation showcased the robustness and reliability of the proposed modeling approach applied to numerical simulation of post-tensioned concrete slabs.

Flexural behavior model for post-tensioned concrete members with unbonded tendons

  • Kim, Kang Su;Lee, Deuck Hang
    • Computers and Concrete
    • /
    • 제10권3호
    • /
    • pp.241-258
    • /
    • 2012
  • The need for long-span members increases gradually in recent years, which makes issues not only on ultimate strength but also on excessive deflection of horizontal members important. In building structures, the post-tension methods with unbonded tendons are often used for long-span members to solve deflection problems. Previous studies on prestressed flexural members with unbonded tendons, however, were mostly focused on the ultimate strength. For this reason, their approaches are either impossible or very difficult to be implemented for serviceability check such as deflection, tendons stress, etc. Therefore, this study proposed a flexural behavior model for post-tensioned members with unbonded tendons that can predict the initial behavior, before and after cracking, service load behavior and ultimate strength. The applicability and accuracy of the proposed model were also verified by comparing with various types of test results including internally and externally post-tensioned members, a wide range of reinforcement ratios and different loading patterns. The comparison showed that the proposed model very accurately estimated both the flexural behavior and strength for these members. Particularly, the proposed model well reflected the effect of various loading patterns, and also provided good estimation on the flexural behavior of excessively reinforced members that could often occur during reinforcing work.

외부 비부착 강선을 가진 부재의 극한 강선응력 평가 (Evaluation of Ultimate Tendon Stress in Prestressed Concrete Members with External Unbonded Tendons)

  • 오병환;유성원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.381-386
    • /
    • 1999
  • The member with external unbonded tendon has two remarkable characteristics, i.e., eccentricity variation and slip by friction force at deviators, compared with internal bonded or unbonded member. An efficient numerical procedure for the nonlinear analysis of prestressed concrete beam with external unbonded tendon considering two remarkable characteristics is formulated and corresponding computer code is developed. On the basis of statistical process of parametric study results, strain compatibility method, eccentricity variation predictor and tendon stress predictor at ultimate state are proposed and verified with test results and existing Codes, which can evaluate flexural behavior at ultimate state. Finally, the proposed procedure and predictors can be efficiently used for the realistic and accurate analysis of prestressed concrete members with external unbonded tendons.

  • PDF

외부 프리스트레스트 콘크리트 부재의 극한상태에서의 강선응력예측식 제안 (Prediction of Prestressing Steel Stress at Ultimate State of Prestressed Concrete Members with External Unbonded Tendons)

  • 오병환;유성원
    • 콘크리트학회논문집
    • /
    • 제11권6호
    • /
    • pp.13-24
    • /
    • 1999
  • The external, unbonded prestressed concrete(PSC) members exhibit very different structural behavior from that of internal bonded PSC members because of eccentricity change and slip occurrence during loading process. The purpose of the present study is to propose the ultimate failure stresses of prestressing (PS) steels for those external unbonded PSC members. To this end, a comprehensive analysis has been made using the nonlinear finite element analysis program developed recently for external unbonded PSC members by authors. A series of major influencing variables have been included in the analysis. It was found that the span-depth ratio, neutral axis depth-effective depth ratio, load geometry, amount of ordinary steel, and prestressing steel ration have great influence for the ultimate failue stress of PS steel is preposed and is compared with experimental dat as well as existing formulas for internal unbonded members. The Comparison indicates that the proposed equation agrees relatively well with experimental data and that existing formulas including ACI and AASHTO equations show some discrepancies from experimental ones. The present study allows more realistic analysis and design of prestressed concrete structures with external unbonded tendons.

외부 부분 부착 PSC 보의 휨거동 실험 (An Experiment of Flexural Behavior for the Prestressed Concrete Beams with Partially Bonded External Tendons)

  • 유성원;이상준
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.141-147
    • /
    • 2012
  • Recently, the external prestressed concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with external tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. By this reason, the ultimate stress of external tendon is smaller than that of bonded tendon or internal unbonded tendon. The purposes of the present paper are therefore to improve the mechanical behavior of external unbonded tendon by using partially bonded external tendon and to evaluate the flexural behavior of partially bonded external tendon by the flexural member experiment. From the experimental results, before flexural cracking, there was no difference between external unbonded, partially bonded and bonded tendons. However, after cracking, yielding load of reinforcement, ultimate load, and tendon stress were increased in the sequence of external unbonded, partially bonded and bonded tendon members. The equation of ACI-318 and AASHTO 1994 were not matched with test results and had no correlations. So the newly proposed equation will be needed including the consideration of tendon profile, tendon bonded type, and so on. The proposed partially bonded external tendon in this paper will be a effective basis for the evaluation of external tendons in construction and design.

외부 PSC 보에서 외부강선의 극한 응력 예측식 제안 (Proposal on the Prediction Equation of Ultimate stress of External Tendon for the Prestressed Concrete Beams with External Tendons)

  • 유성원;하헌재
    • 한국안전학회지
    • /
    • 제25권5호
    • /
    • pp.44-53
    • /
    • 2010
  • Recently, the external prestressed concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. By this reason, the ultimate stress of external tendon is smaller than that of bonded tendon or internal unbonded tendon. However, in the domestic and abroad code, the equation of ultimate stress of external tendon is not suggested yet, and the equation of ultimate stress of internal unbonded tendon is used instead of that of external tendon. Therefore, in this paper, after effective variables of ultimate stress of external tendon were analyzed, the analytical equation of ultimate stress of external tendon was proposed. And the reasonable coefficients were proposed by statistical work of test results of 25 beam with external tendon. Finally, the practical proposed equation of ultimate stress of external tendon was proposed with analytical and statistical model. The equation of ACI-318 and AASHTO 1994 were not matched with test results and had no correlations, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of external tendons in analysis and design.

Flexural ductility of prestressed concrete beams with unbonded tendons

  • Au, F.T.K.;Chan, K.H.E.;Kwan, A.K.H.;Du, J.S.
    • Computers and Concrete
    • /
    • 제6권6호
    • /
    • pp.451-472
    • /
    • 2009
  • Based on a numerical method to analyse the full-range behaviour of prestressed concrete beams with unbonded tendons, parametric studies are carried out to investigate the influence of 11 parameters on the curvature ductility of unbonded prestressed concrete (UPC) beams. It is found that, among various parameters studied, the depth to prestressing tendons, depth to non-prestressed tension steel, partial prestressing ratio, yield strength of non-prestressed tension steel and concrete compressive strength have substantial effects on the curvature ductility. Although the curvature ductility of UPC beams is affected by a large number of factors, rather simple equations can be formulated for reasonably accurate estimation of curvature ductility. Conversion factors are introduced to cope with the difference in partial safety factors, shapes of equivalent stress blocks and the equations to predict the ultimate tendon stress in BS8110, EC2 and ACI318. The same equations can also be used to provide conservative estimates of ductility of UPC beams with compression steel.