• Title/Summary/Keyword: stress models

Search Result 2,413, Processing Time 0.028 seconds

Evaluation of Resilient Modulus Models for Recycled Materials (재활용 도로재료의 회복탄성계수 산정을 위한 적용 모델의 평가)

  • Son, Young-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.51-57
    • /
    • 2010
  • Many models have been used to represent the effects of confining stress, bulk stress, and shear stress on the value of the resilient modulus (Mr). This study was conducted to estimate Mr of the recycled materials such as recycled concrete aggregate (RCA) and recycled asphalt pavement (RAP) through the repeated load cyclic test. Also, two models were applied to estimation of Mr for comparing between measured Mr values and predicted Mr values. The first model (A-model) can provide a quick and easy estimation of the Mr based on the bulk stress, while the second model (N-model) includes not only the bulk stress but also the shear stress. Statistical analysis indicated that all results using the both of models are significant at a 95 % confidence level. Therefore, the both of models could be used as an effective prediction model of Mr for RCA and RAP. Especially, the Model 2 including the parameters of the bulk stress and the shear stress could give more reliable estimation at the high range of Mr values.

Evaluation of the Temperature Dependent Flow Stress Model for Thermoplastic Fiber Metal Laminates (열가소성 섬유금속적층판의 온도를 고려한 유동응력 예측에 대한 연구)

  • Park, E.T.;Lee, B.E.;Kang, D.S.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.52-61
    • /
    • 2015
  • Evaluation of the elevated temperature flow stress for thermoplastic fiber metal laminates(TFMLs) sheet, comprised of two aluminum sheets in the exterior layers and a self-reinforced polypropylene(SRPP) in the interior layer, was conducted. The flow stress as a function of temperature should be evaluated prior to the actual forming of these materials. The flow stress can be obtained experimentally by uniaxial tensile tests or analytically by deriving a flow stress model. However, the flow stress curve of TFMLs cannot be predicted properly by existing flow stress models because the deformation with temperature of these types of materials is different from that of a generic pure metallic material. Therefore, the flow stress model, which includes the effect of the temperature, should be carefully identified. In the current study, the flow stress of TFMLs were first predicted by using existing flow stress models such as Hollomon, Ludwik, and Johnson-Cook models. It is noted that these existing models could not effectively predict the flow stress. Flow stress models such as the modified Hollomon and modified Ludwik model were proposed with respect to temperatures of $23^{\circ}C$, $60^{\circ}C$, $90^{\circ}C$, $120^{\circ}C$. Then the stress-strain curves, which were predicted using the proposed flow stress models, were compared to the stress-strain curves obtained from experiments. It is confirmed that the proposed flow stress models can predict properly the temperature dependent flow stress of TFMLs.

A Study on Anti-Stress Activities of Cholic Acid Derivatives (담츱산류의 항스트레스 효능에 관한 연구)

  • 조태순;이종찬;조성익;이선미
    • Biomolecules & Therapeutics
    • /
    • v.6 no.3
    • /
    • pp.232-241
    • /
    • 1998
  • This study was done to investigate whether cholic acid derivatives have anti-stress activity in various stress models. Two cholic acid derivatives, ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (WDCA), were used. physical, psychological, chemical and environmental stress models were performed. Adrenal weight, serum glucose levels and ALP activity were elevated in restraint stress model, but this elevation was prevented by UDCA treatment. Moreover, UDCA and TUDCA inhibited exploratory and spontaneous movements in oscillation stress model. In alcohol-induced stress model, TUDCA improved rotarod performance. UDCA and TUDCA significantly reduced the involution of lymphoid organs and the increment of WBC counts in cold stress model. These findings suggest that choric acid derivatives have antistress effects in various stress models.

  • PDF

Stress Level Based Emotion Classification Using Hybrid Deep Learning Algorithm

  • Sivasankaran Pichandi;Gomathy Balasubramanian;Venkatesh Chakrapani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3099-3120
    • /
    • 2023
  • The present fast-moving era brings a serious stress issue that affects elders and youngsters. Everyone has undergone stress factors at least once in their lifetime. Stress is more among youngsters as they are new to the working environment. whereas the stress factors for elders affect the individual and overall performance in an organization. Electroencephalogram (EEG) based stress level classification is one of the widely used methodologies for stress detection. However, the signal processing methods evolved so far have limitations as most of the stress classification models compute the stress level in a predefined environment to detect individual stress factors. Specifically, machine learning based stress classification models requires additional algorithm for feature extraction which increases the computation cost. Also due to the limited feature learning characteristics of machine learning algorithms, the classification performance reduces and inaccurate sometimes. It is evident from numerous research works that deep learning models outperforms machine learning techniques. Thus, to classify all the emotions based on stress level in this research work a hybrid deep learning algorithm is presented. Compared to conventional deep learning models, hybrid models outperforms in feature handing. Better feature extraction and selection can be made through deep learning models. Adding machine learning classifiers in deep learning architecture will enhance the classification performances. Thus, a hybrid convolutional neural network model was presented which extracts the features using CNN and classifies them through machine learning support vector machine. Simulation analysis of benchmark datasets demonstrates the proposed model performances. Finally, existing methods are comparatively analyzed to demonstrate the better performance of the proposed model as a result of the proposed hybrid combination.

Stress Relaxation of Wood and Theoretical Models under Tensile and Bending Strain (인장과 휨변형하에서 목재의 응력이완 및 이론모형)

  • Jang, Sang-Sik;Kang, Chun-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.13-19
    • /
    • 1998
  • Stress relaxation tests have been performed under five different tensile strain levels and five different bending strain levels. Three different theoretical models have been developed based on four-element Burger's model, viscoelastic theory and viscous-viscoelastic theory. Experimental data were used to obtain parameters of the models and to verify accuracy of the models. Among the three theoretical models developed in this study, three-integral model (Model 3) based on viscous-viscoelastic theory showed the most exact estimations of stress relaxation under both tensile and bending strains and their correlation coefficients were greater than 0.99 for all the strain levels. Model 1 showed little initial stress relaxation. Model 2 showed excessive initial relaxation and, then, no relaxation after about 20 minute of strain application. Stress retention under strain decreased as strain increased, which means increased stress relaxation as strain increases. When the strain level was less than proportional limit, the effect of strain level on stress relaxation was not clearly shown. However, this effect was increased as strain level increased when strain level was greater than proportional limit.

  • PDF

Numerical Analysis of Welding Residual Stress Using Heat Source Models for the Multi-Pass Weldment

  • Bae, Dong-Ho;Kim, Chul-Han;Cho, Seon-Young;Hong, Jung-Kyun;Tsai, Chon-Liang
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1054-1064
    • /
    • 2002
  • Numerical prediction of welding-induced residual stresses using the finite element method has been a common practice in the development or refinement of welded product designs. Various researchers have studied several thermal models associated with the welding process. Among these thermal models, ramp heat input and double-ellipsoid moving source have been investigated. These heat-source models predict the temperature fields and history with or without accuracy. However, these models can predict the thermal characteristics of the welding process that influence the formation of the inherent plastic strains, which ultimately determines the final state of residual stresses in the weldment. The magnitude and distribution of residual stresses are compared. Although the two models predict similar magnitude of the longitudinal stress, the double-ellipsoid moving source model predicts wider tensile stress zones than the other one. And, both the ramp heating and moving source models predict the stress results in reasonable agreement with the experimental data.

Applicability of exponential stress-strain models for carbonate rocks

  • Palchik, Vyacheslav
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.919-925
    • /
    • 2018
  • Stress-strain responses of weak-to-strong carbonate rocks used for tunnel construction were studied. The analysis of applicability of exponential stress-strain models based on Haldane's distribution function is presented. It is revealed that these exponential equations presented in transformed forms allow us to predict stress-strain relationships over the whole pre-failure strain range without mechanical testing of rock samples under compression using a press machine and to avoid measurements of axial failure strains for which relatively large values of compressive stress are required. In this study, only one point measurement (small strain at small stress) using indentation test and uniaxial compressive strength determined by a standard Schmidt hammer are considered as input parameters to predict stress-strain response from zero strain/zero stress up to failure. Observations show good predictive capabilities of transformed stress-stress models for weak-to-strong (${\sigma}_c$ <100 MPa) heterogeneous carbonate rocks exhibiting small (< 0.5 %), intermediate (< 1 %) and large (> 1 %) axial strains.

Two Back Stress Hardening Models in Rate Independent Rigid Plasticity (변형률 독립 강소성 구성 방정식에서의 이중 후방 응력 경화 모델)

  • Yun S. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.327-337
    • /
    • 2005
  • In the present work, the two back stress kinematic hardening models are proposed by combining Armstrong-Frederick, Phillips and Ziegler's hardening rules. Simple combination of hardening rules using simple rule of mixtures results in various evolutions of the kinematic hardening parameter. Using the combined hardening models the ultimate back stress fur the present models is also derived. The stress rate is co-rotated with respect to the spin of substructure due to the assumption of kinematic hardening rule in finite deformation regime. The work piece under consideration is assumed to consist of the elastic and the rigid plastic deformation zone. Then, the J2 deformation theory is facilitated to characterize the plastic deformation behavior under various loading conditions. The plastic deformation localization behaviors strongly depend on the constitutive description namely back stress evolution and its hardening parameters. Then, the analysis for Swift's effects under the fixed boundaries in axial directions is carried out using simple shear deformation.

Assessment of Explicit Algebraic Stress/Heat-Flux Models for Reduction of Heat Transfer in a Vertical Pipe with Intense Heating (Explicit Algebraic Stress/Heat-Flux 모형을 이용한 벽면가열이 높은 수직관 내의 열전달 감소에 대한 수치적 해석)

  • Baek, Seong-Gu;Park, Seung-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1724-1733
    • /
    • 2003
  • This paper assesses the prediction performance of explicit algebraic stress and heat-flux models for reduction of heat transfer coefficient in a strongly-heated vertical tube. Two explicit algebraic stress models and four explicit algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the turbulent gas flows with intense heating, which yields the significant property-variation. The results showed that the two combinations of GS-AKN and WJ-mAKN predicted the Nusselt number and the axial wall temperature variations well and that the predictions of Nusselt number with WJ-combinations spread in a wider range than those with Gs-combinations. WJ is the explicit algebraic stress model of Wallin and Johansson and GS is the model of Gatski and Speziale and that AKN is the explicit heat-flux model of Abe, Kondoh and Nagano and mAKN is the modified AKN.

Strength Models dependent on Load Configurations (하중형상과 콘크리트 부재의 강도모형)

  • Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.843-846
    • /
    • 2008
  • Rationality of strength models for structural concrete depends on how to treat loads on boundaries and load paths within members. Differentiation between strut-and-tie models and stress fields approaches for shear strength models is discussed in this paper for salient use of current design formula in design code provisions. How to model configuration of loads and stress states along the boundary for the regions under provides a key to realistic construction of stress fields together with STM.

  • PDF