• Title/Summary/Keyword: stress growth behavior

Search Result 462, Processing Time 0.031 seconds

2-Step Shot Peening Process for the Improvement of Fatigue Crack Growth Properties (균열 특성 개선을 위한 2단 쇼트피닝 가공)

  • Lee, Seoung-Ho;Shim, Dong-Suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.67-72
    • /
    • 2003
  • In this study, to investigate the effects of 2-step shot peening at the surface of spring steel, crack growth tests are conducted on spring steel and shot peened specimens. And then the residual stresses and fractographs are examined. The crack growth equation that can describe the whole crack growth behavior is used to evaluate the experiment results. The results show that fatigue crack glows slowly in the shot peened specimen than in the unpeened. And in the case of the 2-step shot peened specimen the initial stress intensity factor range and the fracture toughness is higher than the unpeened specimen due to the compressive residual stress. Fractographs show that the compressive residual stress of the surface suppress the fatigue crack opening and consequently slow crack growth rates.

  • PDF

A Three-Dimensional Progressive Failure Model for Joints Considering Fracture Mechanics and Subcritical Crack Growth in Rock (암석파괴역학에 의한 3차원 절리면의 진행성 파괴 모델)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.86-94
    • /
    • 2009
  • A three dimensional rock joint element was developed considering fracture mechanics and subcritical crack growth to simulate non-linear behavior and the progressive failure of rock joints. Using this 3-D joint element, joint shear tests of rock discontinuities were simulated by a numerical method. The asperities on the joint surface began to fail at stress levels lower than the rock fracture toughness and continued progressively due to subcritical crack growth. As a result of progressive failing in each and every asperity, the joint showed non-linear stress-time behavior including stress hardening/softening and the reaching of a residual stress.

Influence of overload on the fatigue crack growth retardation and the statistical variation (강의 피로균열지연거동에 미치는 과대하중의 영향과 통계적 변동에 관한 연구)

  • 김선진;남기우;김종훈;이창용;박은희;서상하
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.76-88
    • /
    • 1997
  • Constant .DELTA.K fatigue crack growth rate experiments were performed by applying an intermediate single and multiple overload for structural steel, SM45C. The purpose of the present study is to investigate the influence of multiple overloads at various stress intensity factor ranges and the effect of statistical variability of crack retardation behavior. The normalized delayed load cycle, delayed crack length and the minimum crack growth rate are increased with increasing baseline stress intensity factor range when the overload ratio and the number of overload application were constant. The crack retardation under low baseline stress intensity factor range increases by increasing the number of overload application, but the minimum crack growth rate decreases by increasing the number of overload application. A strong linear correlation exists between the minimum crack growth rate and the number of overload applications. And, it was observed that the variability in the crack growth retardation behavior are presented, the probability distribution functions of delayed load cycle, delayed crack length and crack growth life are 2-parameter Weibull. The coefficient of variation of delayed load cycle and delayed crack length for the number of 10 overload applications data are 14.8 and 9.2%, respectively.

  • PDF

An Effect of Compressive Residual Stress on a High Temperature Fatigue Crack Propagation Behavior of The Shot-peened Spring Steel (압축잔류응력이 스프링강의 고온환경 피로크랙 진전거동에 미치는 영향)

  • Park, Keyoung-Dong;Jung, Chan-Gi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.117-124
    • /
    • 2002
  • The lightness of components required in automobile and machinery industry is requiring high strength of components. In particular, manufacturing process and new materials development for solving the fatigue fracture problem attendant upon high strength of suspension of automobile are actively advanced. In this paper, the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in high temperatures($100^{\circ}C,\;150^{\circ}C,\;180^{\circ}C$) was investigated with considering fracture mechanics. So, we can obtain followings. (1) Compressive residual stress is decreased in high temperature, that is, with increasing temperature. (2) The effect of compressive residual stress on fatigue crack growth behavior in high temperature is increased below ${\Delta}K=17{\sim}19MPa\sqrt{m}$. The fatigue crack growth rate is increased with increasing temperature. The fatigue life is decreased with increasing temperature. (3) The dependence of temperature and compressive residual stress on the parameters C and m in Paris' law formed the formulas such as equations (3),(4),(5),(6),(7),(8),(9),(10). (4) It was investigated by SEM that the constraint of compress residual stress for plastic zone of fatigue crack tip was decreased in high temperature as compared with room temperature.

  • PDF

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

Experimental study on fatigue crack propagation of fiber metal laminates

  • Xie, Zonghong;Peng, Fei;Zhao, Tianjiao
    • Steel and Composite Structures
    • /
    • v.17 no.2
    • /
    • pp.145-157
    • /
    • 2014
  • This study aimed to investigate the fatigue crack growth behavior of a kind of fiber metal laminates (FML) under four different stress levels. The FML specimen consists of three 2024-T3 aluminum alloy sheets and two layers of glass/epoxy composite lamina. Tensile-tensile cyclic fatigue tests were conducted on centrally notched specimen at four stress levels with various maximum values. A digital camera system was used to take photos of the propagating cracks on both sides of the specimens. Image processing software was adopted to accurately measure the length of the cracks on each photo. The test results show that: (1) a-N and da/dN-a curves of FML specimens can be divided into transient crack growth segment, steady state crack growth segment and accelerated crack growth segment; (2) compared to 2024-T3 aluminum alloy, the fatigue properties of FML are much better; (3) da/dN-${\Delta}K$ curves of FML specimens can be divided into fatigue crack growth rate decrease segment and fatigue crack growth rate increase segment; (3) the maximum stress level has a large influence on a-N, da/dN-a and da/dN-${\Delta}K$ curves of FML specimens; (4) the fatigue crack growth rate da/dN presents a nonlinear accelerated increasing trend to the maximum stress level; (5) the maximum stress level has an almost linear relationship with the stress intensity factor ${\Delta}K$.

The Effect of Defect Location Near a Circular Hole Notch on the Relationship Between Crack Growth Rate (da/dN) and Stress Intensity Factor Range (δK) - Comparative Studies of Fatigue Behavior in the Case of Monolithic Al Alloy vs. Al/GFRP Laminate - (원공노치 인근에 발생한 결함의 위치변화가 균열성장률(da/dN) 및 응력확대계수범위(δK)의 관계에 미치는 영향 - 단일재 알루미늄과 Al/GFRP 적층재의 피로거동 비교 -)

  • Kim, Cheol-Woong;Ko, Young-Ho;Lee, Gun-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.344-354
    • /
    • 2007
  • The objective of this study is to investigate the effect of arbitrarily located defect around the circular hole in the aircraft structural material such as Al/GFRP laminates and monolithic Al alloy sheet under cyclic bending moment. The fatigue behavior of these materials may be different due to the defect location. Material flaws in the from of pre-existing defects can severely affect the fatigue crack initiation and propagation behavior. The aim of this study is to evaluate effects of relative location of defects around the circular hole in monolithic Al alloy and Al/GFRP laminates under cyclic bending moment. The fatigue behavior i.e., the stress concentration factor($K_t$), the crack initiation life($N_i$), the relationship between crack length(a) and cycles(N), the relationship between crack growth rate(da/dN) and stress intensity factor range(${\Dalta}K$) near a circular hole are considered. Especially, the defects location at ${\theta}_1=0^{\circ}\;and\;{\theta}_2=30^{\circ}$ was strongly effective in stress concentration factor($K_t$) and crack initiation life($N_i$). The test results indicated the features of different fatigue crack propagation behavior and the different growing delamination shape according to each location of defect around the circular hole in Al/GFRP laminates.

An Effect of Shot Velocity of Shot-peening on A Property of Growth Behavior of Fatigue Crack for Spring Steel (스프링강의 피로크랙진전 특성에 미치는 쇼트피닝 투사속도의 영향)

  • Park, Kyoung-Dong;No, Young-Sok
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.341-346
    • /
    • 2002
  • In this study, an effect that compressive residual stress formed by shot-peening the surface of spring steel(JISG SUP-9) at each shot velocity(1800, 2200, 2600, 3000rpm) on the fatigue crack growth property and threshold stress intensity factor, ${\Delta}K_{th}$, was examined. Followings are the result (1) Compressive residual stress on surface of specimen was determined at each -601 MPa(1800rpm), -638 MPa(2200rpm), -587 MPa (2600rpm), -550 MPa(3000rpm) by shot velocity of shot peening and threshold stress intensity factor, ${\Delta}K_{th}$, fatigue crack growth rate, da/dN, on fatigue crack growth is obstructed by the compressive residual stress was determined at each $5.619\;MPa\sqrt{m}$(Un-peening), $8.319\;MPa\sqrt{m}$(1800rpm), $8.797\;MPa\sqrt{m}$(2200rpm), $7.835\;MPa\sqrt{m}$(2600rpm), $7.352\;MPa\sqrt{m}$(3000rpm) (2) Existing compressive residual stress by effect of shot velocity of shot-peening on relation of crack length. a, and number of cycle, N, was 2 times progressed in case of 2200rpm than specimen of Un-peening on fatigue life. And fatigue life was 1.6 times progressed incase of 3000rpm by Over peening. (3) Fatigue life of Material on Paris' law, $da/dN=C({\Delta}K)^m$, that effect of material constant, C, and fatigue crack growth exponent, m, was influenced by effect of. C and m.

  • PDF

Evaluation of Delamination for Fiber Reinforced Composite Material without Crack (균열이 발생하지 않는 섬유강화 복합재료의 층간분리 평가법)

  • 송삼홍;김철웅;황진우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1349-1353
    • /
    • 2003
  • Previous researches for fiber reinforced composite material(FRCM) have been evaluated the fatigue delamination behavior using the traditional fracture mechanics parameters. Therefore. previous researches for FRCM have not generally been firmed yet. Because delamination growth behavior in FRCM should be consider relationship between delamination area, A$\sub$D/ and crack length, a instead of traditional fracture mechanics parameters. Especially, in case of delamination behavior for FRCM without crack should be considering equivalent crack, i.e., pseudo crack, a$\sub$p/, using the fracture behavior of FRCM with crack. The major purpose of this study was to evaluate the delamination for FRCM without crack. The details of the studies are as follow : 1) Relationship between crack growth rate, da/dN and stress intensity factor, ΔK in FRCM containing a saw-cut and circular hole with crack. 2) Propose of PSEUDO CRACK MODEL for the delamination in FRCM without crack. 3) Analysis of crack propagation energy, E$\sub$crack/ using a total energy, E$\sub$total/ and delamination growth energy, E$\sub$del/.

  • PDF

Evaluation on Fatigue Crack Propagation Behavior of The Shot-peened and un-peened Spring Steel (쇼트피이닝재와 언피닝재의 피로균열진전거동 평가)

  • Park, Keyong-Dong;Ryu, Chan-Uk
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.247-254
    • /
    • 2003
  • The lightness of components required in automobile and machinery industry is requiring high strength of components. In particular manufacturing process and new materials development for solving the fatigue fracture problem attendant upon high strength of suspension of automobile are actively advanced. In this paper, the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in high temperatures($100^{\circ}$, $150^{\circ}$, $180^{\circ}$) was investigated with considering fracture mechanics. So, we can obtain followings. (1)Compressive residual stress decreases in high temperature, that is, with increasing temperature. (2)The effect of compressive residual stress on fatigue crack growth behavior in high temperature increases below ${\Delta}K=17{\sim}19MPa$ (3)It was investigated by SEM that the constraint of compress residual stress for plastic zone of fatigue crack tip was decreased in high temperature as compared with room temperature.

  • PDF