• Title/Summary/Keyword: stress gradient effect

Search Result 155, Processing Time 0.02 seconds

Geotechnical Characteristics of DCM-Improved Specimen Under Artesian Pressure (피압 작용에 따른 DCM 개량체의 지반공학적 특성)

  • Yun, Dae-Ho;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.187-195
    • /
    • 2022
  • This study investigated the effect of artesian pressure on mechanical properties of deep cement mixing (DCM)-improved specimens. Various laboratory tests such as unconfined compression test and scanning electron microscope (SEM) were conducted on DCM specimens which curied in a water tank with different artesian pressures. The artesian pressure was determined in consideration of the laboratory scale and the hydraulic gradient in field conditions. Results of experimental tests indicated that unconfined compressive strength, secant modulus, and unit weight of specimen decreased and water content tended to increase as an artesian pressure increased. The stress-strain behavior changed brittle to ductile behaviors as an artesian pressure increased. The outflow water from the water tank reacted with the phenolphthalein solution due to the leaching phenomenon of the improved specimen. SEM analysis also confirmed that a small amount of ettringite was formed between soil particles in the specimens with artesian pressure.

Numerical Simulation of Buoyant flume Dispersion in a Stratified Atmosphere Using a Lagrangian Stochastic Model

  • Kim, Hyun-Goo;Noh, Yoo-Jeong;Lee, Choung-Mook;Park, Don-Bum
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.440-448
    • /
    • 2003
  • In the present paper, numerical simulations of buoyant plume dispersion in a neutral and stable atmospheric boundary layer have been carride out. A Lagrangian Stochastic Model (LSM) with a Non-Linear Eddy Viscosity Model (NLEVM) for turbulence is used to generate a Reynolds stress field as an input condition of dispersion simulation. A modified plume-rise equation is included in dispersion simulation in order to consider momentum effect in an initial stage of plume rise resulting in an improved prediction by comparing with the experimental data. The LSM is validated by comparing with the prediction of an Eulerian Dispersion Model (EDM) and by the measured results of vertical profiles of mean concentration in the downstream of an elevated source in an atmospheric boundary layer. The LSM predicts accurate results especially in the vicinity of the source where the EDM underestimates the peak concentration by 40% due to inherent limitations of gradient diffusion theory. As a verification study, the LSM simulation of buoyant plume dispersions under a neutral and stable atmospheric condition is compared with a wind-tunnel experiment, which shows good qualitative agreements.

Residual static strength of cracked concrete-filled circular steel tubular (CFCST) T-joint

  • Cui, M.J.;Shao, Y.B.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1045-1062
    • /
    • 2015
  • Concrete-filled circular t steel tubular joints (CFSTJs) in practice are frequently subjected to fluctuated loadings caused by wind, earthquake and so on. As fatigue crack is sensitive to such cyclic loadings, assessment on performance of CFSTJs with crack-like defect attracts more concerns because both high stress concentration at the brace/chord intersection and welding residual stresses along weld toe cause the materials in the region around the intersection to be more brittle. Once crack initiates and propagates along the weld toe, tri-axial stresses in high gradient around the crack front exist, which may bring brittle fracture failure. Additionally, the stiffness and the load carrying capacity of the CFSTJs with crack may decrease due to the weakened connection at the intersection. To study the behaviour of CFSTJs with initial crack, experimental tests have been carried out on three full-scale CFCST T-joints with same configuration. The three specimens include one uncracked joint and two corresponding cracked joints. Load-displacement and load-deformation curves, failure mode and crack propagation are obtained from the experiment measurement. According to the experimental results, it can be found that he load carrying capacity of the cracked joints is decreased by more than 10% compared with the uncracked joint. The effect of crack depth on the load carrying capacity of CFCST T-joints seems to be slight. The failure mode of the cracked CFCST T-joints represents as plastic yielding rather than brittle fracture through experimental observation.

Construction of the P-T Limit Curve for the Nuclear Reactor Pressure Vessel Using Influence Coefficient Methods : Cooldown Curve (영향계수를 이용한 원자로 압력용기의 운전제한곡선 작성 : 냉각곡선)

  • Jang, Chang-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.505-513
    • /
    • 2002
  • During heatup and cooldown of pressurized water reactor, thermal stress was generated in the reactor pressure vessel (RPV) because of the temperature gradient. To prevent potential failure of RPV, pressure was required to be maintained below the P-T limit curves. In this paper, several methods for constructing the P-T limit curves including the ASME Sec. XI, App. G method were explained and the results were compared. Then, the effects of the various parameters such as flaw size, flaw orientation, cooldown rate, existence of chad, and reference fracture toughness, were evaluated. It was found that the current ASME Sec. XI App. G method resulted in the most conservative P-T limit curve. As the more accurate fracture mechanics analysis results were used, some of the conservatism can be removed. Among the parameters analysed, reference flaw orientation and reference fracture toughness curve had the greatest effect on the resulting P-T limit curves.

Size Distribution Characteristics and Entrapment Efficiency of Dried-Reconstituted Liposomes Containing Epidermal Growth Factor (상피세포성장인자를 함유한 동결건조-재분산 리포좀의 입도분포 및 봉입률)

  • Kim, Hee-Jun;Yu, Sung-Un;Choi, Young-Wook
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.646-652
    • /
    • 1996
  • Epidermal Growth Factor (EGF), discovered by Stanley Cohen in 1960, has a potential healing effect for wounds and bums. Considering wound care, in order to avoid physical stress at the wound surface and efficiently apply EGF, the need for viscous spraying solutions was essential. Viscous spraying solutions containing EGF were prepared by utilizing viscosity-building polymer, poloxamer 407, and by introducing liposome systems. On the other hand, EGF is purified on reverse HPLC gradient program with the mobile solvent of acetonitrile. It is necessary to observe liposomal EGF changes as the acetonitrile contents varied in order to introduce liposome systems at the step of EGF solution (at the time of EGF purifying). By evaluating the size distribution and entrapment efficiency of EGF liposome, it was possible to detemine the limit contents of acetonitrile and establish the optimal conditions for solution formulations. It has been revealed that, as the acetonitrile content increases, mean diameter of EGF liposomes increased and the width of size distribution tends to decrease. The limit contents of acetonitrile were 10%, since there was little difference to the acetonitrile free liposomes.

  • PDF

A Study on Aircraft Structure and Jet Engine Part1 : Analysis of Heat Conduction on the Turbine Disk for Jet Engine (항공기 구조 및 제트 엔진에 관한 연구 제 1 절 : 제트엔진용 터어빈디스크의 열전도 해석)

  • Gil Moon Park;Hwan Kyu Park;Jong Il Kim;Jin Heung Kim;Moo Seok Lee;Nak Kyu Chung
    • Journal of Astronomy and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.153-174
    • /
    • 1985
  • The one of critical factor in gas turbine engine performance is high turbine inlet gas temperature. Therefore, the turbine rotor has so many problems which must be considered such as the turbine blade cooling, thermal stress of turbine disk due to severe temperature gradient, turbine rotor tip clearance, under the high operating temperature. The purpose of this study is to provider the temperature distribution and heat flux in turbine disk which is required to considered premensioned problem by the Finite Difference Method and the Finite Element Methods on the steady state condition. In this study, the optimum aspect ratio of turbine disk was analysed for various heat conductivity of turbine disk material by Finite Difference Method, and the effect of laminating method with high conductivity materials to disk thickness direction by Finite Element Methods in order to cool the disk. The laminating method with high conductivity material on the side of the disk is effective.

  • PDF

Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.229-249
    • /
    • 2016
  • In this paper, buckling characteristics of nonhomogeneous functionally graded (FG) nanobeams embedded on elastic foundations are investigated based on third order shear deformation (Reddy) without using shear correction factors. Third-order shear deformation beam theory accounts for shear deformation effects by a parabolic variation of all displacements through the thickness, and verifies the stress-free boundary conditions on the top and bottom surfaces of the FG nanobeam. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam in deformation, which acts in tension as well as in compression. The material properties of FG nanobeam are supposed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. Comparison between results of the present work and those available in literature shows the accuracy of this method. The obtained results are presented for the buckling analysis of the FG nanobeams such as the effects of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

Characterisation of Tensile Deformation through Infrared Imaging Technique

  • B. Venkataraman, Baldev Raj;Mukhophadyay, C.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.609-620
    • /
    • 2002
  • It is well known that during tensile testing, a part of the mechanical work done on the specimen is transformed into heat energy. However, the ultimate temperature rise and the rate of temperature rise is related to the nature of the material, conditions of the test and also to the deformation behaviour of the material during loading. The recent advances in infrared sensors and image/data processing techniques enable observation and quantitative analysis of the heat energy dissipated during such tensile tests. In this study, infrared imaging technique has been used to characterise the tensile deformation in AISI type 316 nuclear grade stainless steel. Apart from identifying the different stages during tensile deformation, the technique provided an accurate full-field temperature image by which the point and time of strain localization could be identified. The technique makes it possible to visualise the region of deformation and failure and also predict the exact region of fracture in advance. The effect of thermal gradients on plastic flow in the case of interrupted straining revealed that the interruption of strain and restraining at a lower strain rate not only delays the growth of the temperature gradient, but the temperature rise per unit strain decreases. The technique is a potential NDE tool that can be used for on-line detection of thermal gradients developed during extrusion and metal forming process which can be used for ensuring uniform distribution of plastic strain.

Application of machine learning and deep neural network for wave propagation in lung cancer cell

  • Xing, Lumin;Liu, Wenjian;Li, Xin;Wang, Han;Jiang, Zhiming;Wang, Lingling
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.297-312
    • /
    • 2022
  • Coughing and breath shortness are common symptoms of nano (small) cell lung cancer. Smoking is main factor in causing such cancers. The cancer cells form on the soft tissues of lung. Deformation behavior and wave vibration of lung affected when cancer cells exist. Therefore, in the current work, phase velocity behavior of the small cell lung cancer as a main part of the body via an exact size-dependent theory is presented. Regarding this problem, displacement fields of small cell lung cancer are obtained using first-order shear deformation theory with five parameters. Besides, the size-dependent small cell lung cancer is modeled via nonlocal stress/strain gradient theory (NSGT). An analytical method is applied for solving the governing equations of the small cell lung cancer structure. The novelty of the current study is the consideration of the five-parameter of displacement for curved panel, and porosity as well as NSGT are employed and solved using the analytical method. For more verification, the outcomes of this reports are compared with the predictions of deep neural network (DNN) with adaptive optimization method. A thorough parametric investigation is conducted on the effect of NSGT parameters, porosity and geometry on the phase velocity behavior of the small cell lung cancer structure.

Improvement on optimal design of dynamic absorber for enhancing seismic performance of nuclear piping using adaptive Kriging method

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1712-1725
    • /
    • 2022
  • For improving the seismic performance of the nuclear power plant (NPP) piping system, attempts have been made to apply a dynamic absorber (DA). However, the current piping DA design method is limited because it cannot provide the globally optimum values for the target design seismic loading. Therefore, this study proposes a seismic time history analysis-based DA optimal design method for piping. To this end, the Kriging approach is introduced to reduce the numerical cost required for seismic time history analyses. The appropriate design of the experiment method is used to increase the efficiency in securing response data. A gradient-based method is used to efficiently deal with the multi-dimensional unconstrained optimization problem of the DA optimal design. As a result, the proposed method showed an excellent response reduction effect in several responses compared to other optimal design methods. The proposed method showed that the average response reduction rate was about 9% less at the maximum acceleration, about 5% less at the maximum value of the response spectrum, about 9% less at the maximum relative displacement, and about 4% less at the maximum combined stress compared to existing optimal design methods. Therefore, the proposed method enables an effective optimal DA design method for mitigating seismic response in NPP piping in the future.