• Title/Summary/Keyword: stress gene

Search Result 1,285, Processing Time 0.03 seconds

The Expression of Hsp70 and GST Genes in Mytilus coruscus during Air Exposure and Starvation (공기노출 및 절식시기 동안 참담치, Mytilus coruscus 에서 Hsp70 및 GST 유전자 발현에 대한 연구)

  • Kim, Chul Won;Kang, Han Seung
    • The Korean Journal of Malacology
    • /
    • v.32 no.2
    • /
    • pp.73-81
    • /
    • 2016
  • Heat shock proteins (HSPs), one of the most highly conserved groups of proteins characterized to date, play crucial roles in protecting cells against environmental stresses, such as heat shock, salinity and oxidative stress. The glutathione S-transferases (GST) have important role in detoxification of oxidative stress, environmental chemicals and environmental stress. GST mRNA expression have been used as biomarkers on environmental stress. The purpose of this study was to investigate the death rate and the gene expression of Hsp70 and GST during air exposure and starvation. Results showed that, the expression of Hsp70 mRNA was significantly changed in the experiment groups, such as air exposure and starvation. GST mRNA expression was significantly increased in the experimental group of starvation. These results suggest that Hsp70 and GST were played roles in biomarker gene on the air exposure and starvation.

Involvement of Caenohabditis elegans MAPK Signaling Pathways in Oxidative Stress Response Induced by Silver Nanoparticles Exposure

  • Roh, Ji-Yeon;Eom, Hyun-Jeong;Choi, Jin-Hee
    • Toxicological Research
    • /
    • v.28 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • In the present study, toxicity of silver nanoparticles (AgNPs) was investigated in the nematode, Caenohabditis elegans focusing on the upstream signaling pathway responsible for regulating oxidative stress, such as mitogen-activated protein kinase (MAPK) cascades. Formation of reactive oxygen species (ROS) was observed in AgNPs exposed C.elegans, suggesting oxidative stress as an important mechanism in the toxicity of AgNPs towards C. elegans. Expression of genes in MAPK signaling pathways increased by AgNPs exposure in less than 2-fold compared to the control in wildtype C.elegans, however, those were increased dramatically in sod-3 (gk235) mutant after 48 h exposure of AgNPs (i.e. 4-fold for jnk-1 and mpk-2; 6-fold for nsy-1, sek-1, and pmk-1, and 10-fold for jkk-1). These results on the expression of oxidative stress response genes suggest that sod-3 gene expression appears to be dependent on p38 MAPK activation. The high expressions of the pmk-1 gene 48 h exposure to AgNPs in the sod-3 (gk235) mutant can also be interpreted as compensatory mechanisms in the absence of important stress response genes. Overall results suggest that MAPK-based integrated stress signaling network seems to be involved in defense to AgNPs exposure in C.elegans.

Identification and Characterization of the Aquaporin Gene aqpA in a Filamentous Fungus Aspergillus nidulans (사상성 진균 Aspergillus nidulans에서 아쿠아포린 유전자 aqpA의 분리 및 분석)

  • Oh, Dong-Soon;Lu, Han-Yan;Han, Kap-Hoon
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.295-301
    • /
    • 2011
  • Aquaporin is a water channel protein, which is classified as Major Intrinsic Protein (MIP), found in almost all organisms from bacteria to human. To date, more than 200 members of this family were identified. There are two major categories of MIP channels, orthodox aquaporins and aquaglyceroporins, which facilitate the diffusion across biological membranes of water or glycerol and other uncharged compounds, respectively. The full genome sequencing of various fungal species revealed 3 to 5 aquaporins in their genome. Although some functions of aquaporins found in yeast were characterized, however, no functional characteristics were studied so far in filamentous fungi, including Aspergillus sp. In this study, one orthodox aquaporin homolog gene, aqpA, and four aquaglyceroporin homologs, aqpB-E, in a model filamentous fungus Aspergillus nidulans were identified and the function of the aqpA gene was characterized. Knock-out of the aqpA gene didn't show any obvious phenotypic change under the osmotic stress, indicating that the function of the gene does not involved in the osmotic stress response or the function could be redundant. However, the mutant showed antifungal susceptibility resistance phenotype, suggesting that the function of the aqpA gene could be involved in sensing the antifungal substances rather than the osmotic stress response.

Molecular Cloning and Characterization of Mn-Superoxide Dismutase Gene from Candida sp.

  • Hong, Yun-Mi;Nam, Yong-Suk;Choi, Soon-Yong
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.309-314
    • /
    • 1997
  • The manganese-containing superoxide dismutase (MnSOD) is a major component of the cellular defence mechanisms against the toxic effects of the superoxide radical. Within the framework of studies on oxidative stress=responsible enzymes in the Candida sp., the gene encoding the MnSOD was isolated and examined in this study. A specific primer was designed based on conserved regions of MnSOD sequences from other organisms, and was used to isolate the gene by PCR on reverse-transcribed Candida poly($A^{+}$) RNA. The PCR product was used to screen a Candida genomic lambda library and the nucleotide wequence of positive clone was determined. The deduced primary sequence encodes a 25kDa protein which has the conserved residues for enzyme activity and metal binding. The 28 N-terminal amino acids encoded by the Candida cDNA comprise a putatice mitochondrial transit peptide. Potential regulatory elements were identified in the 5' flanking sequences. Northern blot analysis showed that the transcription of the MnSOD gene is induced 5-to 10-fold in response to mercury, cadmium ions and hydrogen peroxide.

  • PDF

The Possible Role of SCO3388, a tmrB-like Gene of Streptomyces coelicolor, in Germination and Stress Survival of Spores

  • Kwon, So-Yeon;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • The SCO3388 gene from Streptomyces coelicolor is homologous to tmrB, the tunicamycin resistance gene of Bacillus subtilis. The SCO3388-inactivation strain (SY-tbl-1) was generated by replacing SCO3388 with thiostrepton resistance gene. Spores of S. coelicolor derivatives were prepared on mannitol-soy flour (MS) agar on which SY-tbl-1 displayed no significant defect in growth and development. When plated on R4 agar, spores of SYtbl-1 displayed retardation in growth and sporulation, whereas its mycelium gave rise to normal growth. Thus, SCO3388 is suggested to be involved in the dormant spore germination. Expression of SCO3388 under the ermE1 promoter restored but only partially the ability to sporulate in SY-tbl-1. Neither SY-tbl-1 nor SY-tbl-1/ermE1p-SCO3388 showed a difference in tunicamycin resistance to the wild type whereas, interestingly, the introduction of ermE1p-SCO3388 dramatically enhanced spore survival to heat and detergent treatments, suggesting that SCO3388 might play a role in the maintenance of spore cell wall integrity.

Acetaminophen Induced Cytotoxicity and Altered Gene Expression in Cultured Cardiomyocytes of $H_9C_2$ Cells

  • Jin, Seon-Mi;Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.11.1-11.8
    • /
    • 2012
  • Objectives: Hepatotoxicity of acetaminophen has been widely studied. However, the adverse effects on the heart have not been sufficiently evaluated. This study was performed to investigate cytotoxicity and alterations of gene expression in cultured cardiomyocytes ($H_9C_2$ cells) after exposure to acetaminophen. Methods: $H_9C_2$ cells were incubated in a 10 mM concentration of acetaminophen for the designated times (6, 12, and 24 hours), and cytotoxicity was determined by the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Alteration of gene expression was observed by microarray analysis, and RT-PCR was performed for the three representative oxidative stress-related genes at 24 hours after treatment. Results: It revealed that acetaminophen was toxic to cardiomyocytes, and numerous critical genes were affected. Induced genes included those associated with oxidative stress, DNA damage, and apoptosis. Repressed genes included those associated with cell proliferation, myocardial contraction, and cell shape control. Conclusions: These findings provide the evidences of acetaminophen-induced cytotoxicity and changes in gene expression in cultured cardiomyocytes of $H_9C_2$ cells.

Analysis of Gene Expression in response to acid stress of Streptococcus mutans Isolated from a Korean Child (한국인 아동으로부터 분리한 Streptococcus mutans 의 산 스트레스에 따른 유전자 발현변화 분석)

  • Kang, Kyung-Hee;Kim, Young-Kwon;Lee, Hyung-Suk;Jin, Ing-Ryol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2990-2996
    • /
    • 2009
  • S. mutans, one of a major causal agents of dental caries, is component of the dental plaque and produces various organic acids such as lactic acid as the end-product of glycolysis. In this study, we are interested in comparing the gene expression of acid-shocked and control cells of S. mutans isolated from Korean with caries. Expression levels of gtfB, gtfC, gtfD and ftf were analyzed by Real-time PCR, when the cells were grown under 20 mM lactic acid stress in the exponential phase. The data showed reduced expression of these genes. S. mutans is known to have developed a variety of mechanisms to tolerate acid sterss. A more detailed analysis of the functions and interactions of acid stress proteins connecting the growth, stress tolerance, biofilm formation is under way.

Identification of genes related to ER stress in bZIP28 gene transgenic potato plant

  • Kim, Dool Yi;Kim, Kyung Hwa;Choi, Man Soo;Ok, Hyun Choog;Kim, Jae Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.153-153
    • /
    • 2017
  • Potato (Solanum tubersosum L.) is susceptible to various environmental stresses such as frost, high temperature, and drought. Enhancement of potato drought tolerance can reduce yield loss under drought that has negative effect on potato tuber growth. Genetic engineering can be utilized to achieve this goal, but such approaches using endogenous potato genes have rarely been applied. Since unpredictable global weather changes cause more severe and frequent water limiting conditions, improvement of potato drought tolerance can minimize such adverse effects under drought and can impact on sustainable potato production. Genetic engineering can be utilized to improve potato drought tolerance, but such approaches using endogenous potato genes have rarely been applied. We were obtained AtbZIP28 gene transgenic potato plants. It is identified transcript levels at various stress conditions, polyethylene glycol (PEG), NaCl, abscisic ${\underline{acid}}$ (ABA). Also, For identification to regulate ER stress response genes in AtbZIP28 gene transgenic potato plant, we screened seven potato genes from RNA-seq analysis under TM treatment. Five and two genes were up- and down-regulated by TM, respectively. Their expression patterns were re-examined at stress agents known to elicit TM, DTT, DMSO and salt stress.

  • PDF