• Title/Summary/Keyword: stress function method

Search Result 866, Processing Time 0.03 seconds

Time-dependent Analysis of Reinforced and Prestressed Concrete Structures Incorporating Creep Recovery Function (크리프 회복 거동을 고려한 철근콘크리트 및 프리스트레스트 콘크리트 부재의 장기거동해석에 관한 연구)

  • Kim, Se-Hoon;Oh, Byung-Hwan
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.279-288
    • /
    • 1999
  • The creep of concrete structures caused by variable stresses is generally calculated by step-by-step method based on the superposition of creep function. Although most practical application is carried out by this linear assumption. significant deviations between predictions and experiments have been observed when unloading takes place, that is. stress is reduced. This shows that the superposition of creep function does not describe accurately the effect of sustained compressive preload. The main purpose of this study is to propose a creep analysis model which is expressed with both creep function and creep recovery function where increase or decrease of stress is repeated. In these two function method, the creep behavior is modelled by using linear creep law for loading and creep recovery law for unloading. To apply two function method to time analysis of concrete structures, the calculation method of creep strain increment under varying stress is proposed. The calculation results based on the present method correlates very well with test data, but the conventional superposition method exhibits large deviation from test results. This paper provides a more accurate method for the time dependent analysis of concrete structures subjected to varying stress, i.e. increasing or decreasing stress. The present method may be efficiently employed in the revision of future concrete codes.

Effect of Thermophysical Properties on Stress Transfer Function ofr Thermal Fatigue Analysis (열피로 해석시 응력전달함수에 미치는 열적 재료 성질의 영향)

  • Kim, Yeong-Jin;Seok, Chang-Seong;Park, Jong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.172-179
    • /
    • 1996
  • For mechanical systems operating at high tempertature, thermal fatigue phenomenon has been recognized as a major cause of mechanical component failures. To evaluate cumulative fatigue damage as a conesquence of thermal fatugue on real time, the stress tranfer function(Green's function) approach is popularly used. The objective of this paper is to investigate the effect of thermophsical properties on the stress tranfer function. For this purpose a modified Green's function approach considering temperature-dependent thermophysical properties is proposed. Two case studies were performed and the proposed approach agrees well with full finite element analysis.

Analysis on the Fatigue Crack Propagation of Weld Toe Crack through Residual Stress Field (잔류응력장을 전파하는 용접 토우부 균열의 전파해석)

  • 김유일;전유철;강중규;한종만;한민구
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.33-40
    • /
    • 2000
  • Fatigue crack propagation life of weld toe crack through residual stress field was estimated with Elber's crack concept. Propagation of weld toe crack is heavily influenced by residual stress caused by welding process, so it is essential to take into account the effect of residual stress on the propagation life of weld toe crack. Fatigue crack at transverse and longitudinal weld toe was studied respectively, which represent typical weld joint in ship structure. Numerical and experimental studies are performed for both cases. Residual stress near weldment was estimated through nonlinear thermo-elasto-plastic finite element method, and residual stress intensity factor with Glinka's weight function method. Effective stress intensity factor was calculated with Newman-Forman-de Koning-Henriksen equation which is based on Dugdale strip yield model in estimating crack closure level U at different stress ratio. Calculated crack propagation life coincided well with experimental results.

  • PDF

Evaluation Method of Hairstyling Materials and its Application to Cosmetic Preparations

  • Abe, Hidetoshi;Iida, Ichiro;Someya, Takao
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.1-12
    • /
    • 2003
  • Instead of sensory evaluation, we designed an evaluation method of the setting function of hairstyling products, based on an original theory focusing on changes in bending stress observed when a load with continuous bending is applied to human hair. Specifically, we developed a device to measure bending stress to quickly and objectively evaluate the condition of human hair, particularly its dynamic properties such as the setting function, following the application of hairstyling products. This device generates a load with continuous bending while applying a pendulum motion to a hair tress, one end of which is anchored. The setting function and holding power of resins of various molecular weight and ionic properties were evaluated using this device. The results demonstrated a close correlation with those obtained by experts' sensory evaluation. The evaluation results of bending stress and holding rate confirmed that the combined use of two different resins could improve the function of setting preparations. Evaluation using this device was able to substitute for sensory evaluation, and offers quick objective evaluation and detection of changes in the holding power of hairstyling products over time. We conclude that evaluation using this device is a promising new method.

  • PDF

Effects of a Neurofeedback Program on Brain Function and Stress in High School Students (뉴로피드백 프로그램이 고등학생의 뇌기능과 스트레스에 미치는 영향)

  • Weon, Hee-Wook;Yi, Seon-Gyu;Kang, Hyung-Gon
    • Child Health Nursing Research
    • /
    • v.14 no.3
    • /
    • pp.315-324
    • /
    • 2008
  • Purpose: This study was done to determine the effects of a neurofeedback program on brain function and stress in occupational high school students. Method: A nonequivalent control group, non-synchronized with pre-posttest design was used with 62 students. Data collection was done from July to December, 2007. The neurofeedback training was given for 30 minutes at a time, three times a week for 12 weeks. Brain function was measured by brain waves in the frontal lobes of the students and analyzed by eight brain quotients characterizing patterns of EEG rhythms. The instrument used to measure stress was a scale for stress from regular daily life. Results: After neurofeedback training, the level of brain quotients in students in the experiment group increased(t=2.36, p<.05) and the level of stress decreased(t=-3.59, p<.001). Conclusion: The results of the study suggested that a neurofeedback program is effective for brain function improvement and stress reduction in high school students. Therefore, the conclusion of this study is that neurofeedback programs can be useful to increase brain function and decrease stress in occupational high school students.

  • PDF

Thermal Shock Stress Intensity Factor and Fracture Test (열충격 응력세기계수와 파괴실험)

  • 이강용;심관보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.130-137
    • /
    • 1990
  • Thermal shock stress intensity factor for an edge-cracked plate subjected to thermal shock is obtained from Bueckner's weight function method. It is shown that thermal shock stress intensity factor has maximum values with variation of time and crack length and that there is most dangerous crack length. By comparing thermal shock stress intensity factor with fracture toughness, the fracture time and critical temperature difference due to thermal shock are determined theoretically. Under constant thermal shock temperature difference, and increase of crack length is shown to increase fracture time. The theoretical fracture time is compared with experimental value measured by acoustic emission method with soda lime glass.

A novel method for solving structural problems: Elastoplastic analysis of a pressurized thick heterogeneous sphere

  • Abbas Heydari
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.39-52
    • /
    • 2024
  • If the governing differential equation arising from engineering problems is treated as an analytic, continuous and derivable function, it can be expanded by one point as a series of finite numbers. For the function to be zero for each value of its domain, the coefficients of each term of the same power must be zero. This results in a recursive relationship which, after applying the natural conditions or the boundary conditions, makes it possible to obtain the values of the derivatives of the function with acceptable accuracy. The elastoplastic analysis of an inhomogeneous thick sphere of metallic materials with linear variation of the modulus of elasticity, yield stress and Poisson's ratio as a function of radius subjected to internal pressure is presented. The Beltrami-Michell equation is established by combining equilibrium, compatibility and constitutive equations. Assuming axisymmetric conditions, the spherical coordinate parameters can be used as principal stress axes. Since there is no analytical solution, the natural boundary conditions are applied and the governing equations are solved using a proposed new method. The maximum effective stress of the von Mises yield criterion occurs at the inner surface; therefore, the negative sign of the linear yield stress gradation parameter should be considered to calculate the optimal yield pressure. The numerical examples are performed and the plots of the numerical results are presented. The validation of the numerical results is observed by modeling the elastoplastic heterogeneous thick sphere as a pressurized multilayer composite reservoir in Abaqus software. The subroutine USDFLD was additionally written to model the continuous gradation of the material.

Viscoelastic stress analysis of nonaxisymmetrically heated cylindrical tubes (비축대칭 열하중을 받는 원통튜브의 점탄성 응력해석)

  • 박진석;서금석;김종인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.396-403
    • /
    • 1991
  • A solution is presented for the computation of the elastic-creep stresses in a hollow cylinder subjected to nonaxisymmetric temperature distribution. The creep problem is treated by the Maxwell creep model. Laplace transformation is used for reformation of the governing equation of elastic problem and Hooke's law in a function of .gamma. , .theta. , and creep constant. The governing equation is set up using the Airy stress function which leads to the biharmonic equation. The solution is obtained by using Fourer series method and Laplace inverse method used to obtain the stress components which include the variation of time. This solution shows excellent agreement with Lamkin's and Boley & Weiner's solution. The viscoelastic stresses are also obtained for the fuel rob tube subjecting nonaxisymmetric thermal load.

The calculation of stress intensity factors by the surface integral method

  • Jin, Chi-Sub;Jang, Heui-Suk;Choi, Hyun-Tae
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.541-553
    • /
    • 1995
  • The determination of the stress intensity factors is investigated by using the surface integral defined around the crack tip of the structure. In this work, the integral method is derived naturally from the standard path integral J. But the use of the surface integral is also extended to the case where body forces act. Computer program for obtaining the stress intensity factors $K_I$ and $K_{II}$ is developed, which prepares input variables from the result of the conventional finite element analysis. This paper provides a parabolic smooth curve function. By the use of the function and conventional element meshes in which the aspect ratio (element length at the crack tip/crack length) is about 25 percent, relatively accurate $K_I$ and K_{II}$ values can be obtained for the outer integral radius ranging from 1/3 to 1 of the crack length and for inner one zero.