• Title/Summary/Keyword: stress function

Search Result 3,084, Processing Time 0.034 seconds

Shear Stress and Atherosclerosis

  • Heo, Kyung-Sun;Fujiwara, Keigi;Abe, Jun-Ichi
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.435-440
    • /
    • 2014
  • Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo and in vitro. Laminar flow which exerts steady laminar shear stress is atheroprotective while disturbed flow creates an atheroprone environment. Emerging evidence has provided new insights into the cellular mechanisms of flowdependent regulation of vascular function that leads to cardiovascular events such as atherosclerosis, atherothrombosis, and myocardial infarction. In order to study effects of shear stress and different types of flow, various models have been used. In this review, we will summarize our current views on how disturbed flow-mediated signaling pathways are involved in the development of atherosclerosis.

Investigation of the Stress Distributions in a Transversely Isotropic Medium Containing a Spheroidal Cavity (구형 공동을 가진 횡 방향 등방성매체의 응력 분포에 관한 연구)

  • 이윤복;전종균
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.159-171
    • /
    • 1997
  • This study investigates the stress distribution in a transversely isotropic medium containing a spheroidal cavity where the medium is under uniaxial tension in z-direction in one case and pure shear in the plane of isotropy in another case. The technical approach used in this study combines exact analytical and numerical methods. The exact analytical method is based upon three potential functions taken in terms of the Legendre associated functions of the first and second kind. The numerical method is based upon the finite difference approach. Numerical results concerning the two loading conditions with five anisotropic materials are presented.

  • PDF

Study on push-out test and bond stress-slip relationship of circular concrete filled steel tube

  • Yin, Xiaowei;Lu, Xilin
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.317-329
    • /
    • 2010
  • According to the results of 9 circular concrete filled steel tube (CFT) push-out tests, a new theoretical model for average bond stress versus free end slip curve is proposed. The relationship between verage bond stress and free end slip is obtained considering some varying influential parameters such as slenderness ratio and diameter-to-thickness ratio. Based on measured steel tube strain and relative slip at different longitudinal positions, the distribution of bond stress and relative slip along the length of steel tube is obtained. An equation for predicting the varying bond-slip relationship along longitudinal length and a position function reflecting the variation are proposed. The presented method can be used in the application of finite element method to analyze the behavior of CFT structures.

Assembly and Function of Seed Endophytes in Response to Environmental Stress

  • Yong-Lan Wang;Han-Bo Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1119-1129
    • /
    • 2023
  • Seeds are colonized by diverse microorganisms that can improve the growth and stress resistance of host plants. Although understanding the mechanisms of plant endophyte-host plant interactions is increasing, much of this knowledge does not come from seed endophytes, particularly under environmental stress that the plant host grows to face, including biotic (e.g., pathogens, herbivores and insects) and abiotic factors (e.g., drought, heavy metals and salt). In this article, we first provided a framework for the assembly and function of seed endophytes and discussed the sources and assembly process of seed endophytes. Following that, we reviewed the impact of environmental factors on the assembly of seed endophytes. Lastly, we explored recent advances in the growth promotion and stress resistance enhancement of plants, functioning by seed endophytes under various biotic and abiotic stressors.

The Effect of a Forest Healing Program on Cognitive Function, Depression, Anxiety, and Cortisol Levels in Elderly People

  • Soyeon, Kim;Jungkee, Choi
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.4
    • /
    • pp.290-301
    • /
    • 2022
  • Increasing life expectancy leads to a rise in the prevalence of aging-related mental diseases and a concomitant increase in the financial and societal pressures related to their prevention and management. This issue is attracting increasing attention from researchers. Therefore, this study aimed to determine whether a healing program in a forest environment is effective for improving cognitive function, depression, anxiety, and stress in elderly people. A nonequivalent control group pretest-posttest design was used. The experimental group consisted of 18 males and females aged 60 to 80 years who participated in a forest healing program for seven days, while the comparison group comprised 10 people with similar demographics. For the process of data analysis, this study performed a cross-analysis to determine the homogeneity of the data and carried out the Wilcoxon signed-rank test, a nonparametric statistical test, to verify the significance of each group. Participation in the forest healing program led to a significant improve-ment in cognitive function (p=0.030). The levels of depression decreased, but this result was not statistically significant. The levels of anxiety decreased significantly (p=0.004). The mean cortisol score, a measurement of stress, decreased, but it was not statistically significant. These findings confirmed the effectiveness of this program for improving certain mental conditions of elderly people, and affirmed that the use of long-term forest healing programs can be expected to alleviate national pressures created by aging societies.

Bond Stress in Concrete Pilled Steel Tubular Column (CFT 기둥의 부착응력에 관한 연구)

  • 권승희;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.93-98
    • /
    • 2001
  • CFT column has excellent structural properties due to the composite action between concrete and steel tube. The bond behavior between the constituent elements has to be found for analyzing the behavior of CFT column. A new model is necessary because most of existing models for bond stress-slip relationship of the deformed bar cannot be applied to the CFT column. Therefore, the objective of this research is to develop a new model related to the bond behavior of CFT column considering the relation between bond stress and vertical stress, and the distribution of lateral stress under the confinement created by steel casing. From equilibrium condition, the formula for relationship between bond stress and vertical stress is derived, and the relationship for the lateral stresses of the CFT column section is obtained by an Airy stress function. The experiments are performed for five CFT column specimens axially loading on concrete alone. The relation between bond strength and lateral stress is investigated from the regression analysis using the measured strains. Finally a new bond strength model is proposed, which is able to predict the relationship for the stress of each direction of CFT column loading on concrete.

Risk Assessment and Intervention of Ergonomic Risk Factor in Beekeeping (치과위생사의 직무스트레스 그리고 작업자세와 상지의 증상여부 및 기능과의 관련성)

  • Kwon, Yu-jin;Kang, Yong Ju;Seo, Sung-Hyo;Kim, Bokyoung;Park, Ki-Soo
    • Journal of agricultural medicine and community health
    • /
    • v.44 no.4
    • /
    • pp.209-219
    • /
    • 2019
  • Objectives: This study investigated musculoskeletal symptoms in upper limbs according to the working environment (job stress) of dental hygienists and examine their relationship with upper limb functions. Methods: The subjects include 198 dental hygienists in dental hospitals and dental clinics in Pusan and Gyeongnam. The questionnaire was consisted of general characteristics of the subjects, job stress, musculoskeletal symptoms in upper limbs and function (Disability Measurement Tool for Upper Extremity Disorders-11, DASH-11). Results: The study was analyzed their musculoskeletal symptoms in upper limbs according to their general characteristics and found that the symptoms occurred in the neck (39.4%), the shoulders (54.6%), elbows (14.7%), and the hands (50.0%). Job stress was associated with upper limb functions (DASH-11) (model 3, B=5.210, p=0.012) and repeated elbow bending and spreading posture was associated with DASH-11 (model 3, B=6.561, p=0.029). Elbow symptoms were associated with DASH-11 in the upper limbs (B=10.679, p=0.003). Conclusion: Dental hygienists are experiencing limitations of upper limb function due to job stress. In particular, even if the correction of their uncomfortable posture is significantly related to the job stress and upper limb function, in order to improve the upper limb function of the dental hygienist, efforts to reduce the job stress as well as the uncomfortable posture are necessary.

A Study on Residual Stress Characteristics for Joint of Soft Rock in Ring Shear Tests (링 전단시험기를 이용한 연암의 절리에 대한 잔류강도 특성에 관한 연구)

  • 권준욱;김선명;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.281-288
    • /
    • 2000
  • In this study, we tried to determine failure criteria for joints of soft rock using ring shear test machine. The residual stress fellowing shear behavior was determined by the result of ring shear test and direct shear test. Ring shear test with the specimens which cover a large deformation range was adapted to measure a residual stress, and was possible to present the peak stress to present the peak stress to the residual stress at the same time. Residual stress is defined a minimal stress of specimens with a large displacement and the result of the peak residual stress is shown by a size of displacement volume. Therefore, the residual stress in soil was decided by shear stress of maximum shear stress - shear displacement(angle) based on the test result of a hyperbolic function ((equation omitted), a, b = experimental constant). In this study, it was proved that the residual stress of rock joint can be determined by using of this method.

  • PDF

Exact solutions of the piezoelectric transducer under multi loads

  • Zhang, Taotao;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.413-431
    • /
    • 2011
  • Under the external shearing stress, the external radial stress and the electric potential simultaneously, the piezoelectric hollow cylinder transducer is studied. With the Airy stress function method, the analytical solutions of this transducer are obtained based on the theory of piezo-elasticity. The solutions are compared with the finite element results of Ansys and a good agreement is found. Inherent properties of this piezoelectric cylinder transducer are presented and discussed. It is very helpful for the design of the bearing controllers.

Improved stress recovery for elements at boundaries

  • Stephen, D.B.;Steven, G.P.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 1997
  • Patch recovery attempts to derive a more accurate stress filed over a particular element than the finite element shape function used for that particular element. Elements that have a free edge being the boundary to the structure have particular stress relationship that can be incorporated to the stress field to improve the accuracy of the approximation.