• Title/Summary/Keyword: stress estimation

Search Result 993, Processing Time 0.032 seconds

Web-based Design Support System for Automotive Engine Pulley (웹 기반 자동차용 엔진 풀리 설계 지원 시스템)

  • Kim H.J.;Chun D.M.;Ahn S.H.;Hwang B.C.;Jang J.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.639-640
    • /
    • 2006
  • Many companies in mechanical engineering fields have accumulated information of design and manufacturing. The Enterprise Resource Planning (ERP) and Product Data Management (PDM) systems help information gathering and data managing. However, these systems are not flexible to support suitable functionality for specific product because these systems deal with entire enterprise resources. To cope with this issue, a web-based design support system was constructed for the design process of automotive steel pulley. This system provided 1) search service for part design with key word and clustering map, and 2) estimation service of maximum stress. These services reduced design time by reducing iterative jobs with Computer Aided Design (CAD) and Computer Aided Engineering (CAE) for stress analysis, and by enhancing search for existing data of steel pulley.

  • PDF

A Study on the Failed Rest After Work in Association with Cardiovascular and Other Diseases as Well as Physical disorders

  • Im, Chea-Eun;Kim, De-Hi
    • Korean Journal of Health Education and Promotion
    • /
    • v.2 no.1
    • /
    • pp.63-78
    • /
    • 2000
  • This survey provides, at a participation rate of 70%, 4,790 examinees. The purpose of this study is to study the association of the failed rest after work with 34 diseases including cardiovascular diseases. The index of the failed rest after work was composed of 4 questions about "thinking of work for several hours", "feeling exhausted", feeling unsatisfied or depressed", and "needing to go to bed early for next day′s work". Estimation of correlation among 4 variables, factor analysis, and ANCOVA adjusted for sex, age and job were carried out. A self-rating questionnaire of one′s own disease history and the "London School of Hygiene Cardiovascular Questionnaire" were used in order to discriminate each morbid group from the opposite group. Brief explanations of the result are as follows: 1) Every variable of failed rest after work shows significant difference between the morbid group and the no morbid group for possible infarction; for angina pectoris in the total, and men. 2) Among 4 variables ′exhaustion′ best discriminates the infarction group from the no infarction group, and the angina group from the no angina group. 3) The factor of failed rest after work is a significant factor that distinguishes the infarction group from the no infarction group, and the angina pectoris group from the no angina group. Therefore, stress management through health education and promotion such as behavioral modification can be used to reduce cardiovascular diseases and stress as perceived by an individual.

  • PDF

A Design Variable Study of Plane Stress Element by Reliability Analysis (신뢰성 해석에 의한 평면응력요소의 설계변수 분석)

  • 박석재;최외호;김요숙;신영수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.102-109
    • /
    • 2001
  • In order to take account of the statistical properties of probability variables used in the structural analysis, the conventional approach using the safety factor based on past experience usually estimated the safety of a structure. The real structures could only be analyzed with the error in estimation of loads, material characters and the dimensions of the members. But the errors should be considered systematically in the structural analysis. Structural safety could not precisely be appraised by the traditional structural design concept. Recently, new approach based on the probability concept has been applied to the assessment of structural safety using the reliability concept. Thus, the computer program by the Probabilistic FEM is developed by incorporating the probabilistic concept into the conventional FEM method. This paper estimated for the reliability of a plane stress structure by Advanced First-Order Second Moment method using von Mises, Tresca and Mohr-Coulomb failure criterions. The reliability index and failure probability of attained by the Monte Carlo Simulation method with the von Mises criterion were same as PFEM, but the Monte Carlo Simulation were very time-consuming. The variance of member thickness and load could influence the reliability and failure probability most sensitively among the design variables from the results of the parameter analysis. And proper failure criterion must be used to design safely.

  • PDF

Mechanical Analysis of Macro-Hexagon Porous Dental Implant Using Selective Laser Melting Technique (SLM법으로 매크로 육각다공질 구조를 부여한 치과 임플란트의 역학 분석)

  • Kim, Bu-Sob;Choi, Sung-Min
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • Purpose: In this study, FEM(Finite Element Method) and bending strength test was conducted using normal implant and porous implant for the mechanical estimation of porous dental implant made by SLM method. Methods: Mechanical characteristics of PI(porous implant) and NI(normal implant) applied distributed loads(200N, 500N) were observed through FEM analysis. And each bending strength was gotten through bending test using MTS(Mechanical Test System, Instron 8871). Results: The result of FEM analysis was observed that stress difference between upper and surface of PI was 12 times, while NI was 2 times. The result of bending test was observed that bending strength of PI was lower than NI. we made a decision about this result that cross-sectional area of NI was larger than the PI. Conclusion: The stress shielding ability of porous implant was better than normal implant through result of FEM analysis. And bending strength of porous implant was lower than NI. We think that cause of this result was difference of cross-sectional area.

Estimation of Contact Fatigue Life of a Girth Gear Based on Pinwheel (핀 휠 기반 거스 기어의 접촉 피로수명 평가)

  • Kwon, Soon-man;Shin, Heung Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.4
    • /
    • pp.245-252
    • /
    • 2016
  • Girth gears are applied in the mining, cement, and mineral processing industries and used in various types of horizontal mills, rotary dryers and kilns, and other heavy-gear ring applications. The large ring gears are normally fitted outside mills or kilns to provide the primary rotational drive. Recently, an external pinwheel gear set (e-PGS) was introduced to overcome manufacturing problems associated with girth gears. e-PGS is also suitable for low-speed, heavy-duty mechanical transmission and dusty and poor-lubrication conditions. This paper first presents a new profile modification of root relief for the e-PGS cam pinion. We then investigate load-stress factors to estimate the surface fatigue life by varying the shape design parameters. The results show that the contact fatigue life of an e-PGS can be extended significantly by increasing the profile shift coefficient. However, support bearing life of the pinwheel depends more on the contact force distribution than the profile shift coefficient.

A Study of Crack Propagation and Fatigue Life Prediction on Welded Joints of Ship Structure(I) (선체 용접부의 균열진전 및 피로수명 예측에 관한 연구(I))

  • Kim, Kyung-Su;Ito, Hisashi;Seo, Yong-Seok;Jang, Beam-Sean;Kim, Beam-Il;Kwan, Young-Bin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.669-678
    • /
    • 2008
  • The fatigue life of ship structure under cyclic loading condition is made up of initiation and propagation stages. In this study, crack growth test is carried out on large scale structure test specimens and fracture mechanical analysis is performed. The fatigue lives measured from fatigue tests are compared with DNV, Matsuoka and BS 5400 S-N curve. And to predict the crack initiation life, S-N curve, corresponding to crack length 20mm at welded joint, is developed based on hot spot stress range. Also crack propagation life is calculated using crack growth equation. Consequently, computed crack propagation life is compared with experiment results.

Strength estimation for FRP wrapped reinforced concrete columns

  • Cheng, Hsiao-Lin;Sotelino, Elisa D.;Chen, Wai-Fah
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.1-20
    • /
    • 2002
  • Fiber-Reinforced Plastics (FRP) have received significant attention for use in civil infrastructure due to their unique properties, such as the high strength-to-weight ratio and stiffness-to-weight ratio, corrosion and fatigue resistance, and tailorability. It is well known that FRP wraps increase the load-carrying capacity and the ductility of reinforced concrete columns. A number of researchers have explored their use for seismic components. The application of concern in the present research is on the use of FRP for corrosion protection of reinforced concrete columns, which is very important in cold-weather and coastal regions. More specifically, this work is intended to give practicing engineers with a more practical procedure for estimating the strength of a deficient column rehabilitated using FRP wrapped columns than those currently available. To achieve this goal, a stress-strain model for FRP wrapped concrete is proposed, which is subsequently used in the development of the moment-curvature relations for FRP wrapped reinforced concrete column sections. A comparison of the proposed stress-strain model to the test results shows good agreement. It has also been found that based on the moment-curvature relations, the balanced moment is no longer a critical moment in the interaction diagram. Besides, the enhancement in the loading capacity in terms of the interaction diagram due to the confinement provided by FRP wraps is also confirmed in this work.

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

A Estimation of Thermal Fatigue Performance in Three-way Catalyst (삼원 촉매의 열적 내구 성능 평가)

  • Lee, Sung Riong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • This study examines thermal safety on three-way catalyst that dominates 70% among whole exhaust gas purification device in 2003. Three-way catalyst maintains high temperature in interior domain but maintains low temperature on outside surface. Therefore this device shows tensile stress on outside surface. Temperature distribution of three-way catalyst was acquired by thermal flow analysis for predicted thermal flow parameter. Thermal stress analysis for three-way catalysis was performed based on this temperature distribution. Thermal safety of three-way catalyst was estimated by strength reduction factor and failure probability.

Comparison between Direct and Indirect Implementation of Generalized Hoek and Brown Failure Criterion in Numerical Analysis Procedure (범용 Boek-Brown 파괴기준식의 직접 및 간접적 적용에 관한 수치해석과정의 비교 분석)

  • Deb Debasis;Choi Sung O.
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.228-235
    • /
    • 2005
  • Friction angle and cohesion of rock masses can be estimated from Hoek and Brown failure criterion and then plastic corrections can be applied using Mohr-Coulomb yield function. This study finds that this estimation procedure would not be appropriate for weak rock masses and for cases where low confining stress is expected to develop. A procedure is outlined in this paper for estimating plastic corrections directly from Hoek and Brown material model. Comparative study shows that direct procedure would simulate non-linear failure surface better than indirect procedure especially in the low confining stress regime.