• Title/Summary/Keyword: stress domain

Search Result 711, Processing Time 0.023 seconds

The Ultimate Strength Analysis of the Welded Plate Elements having Resiual Stresses and Strains (잔류응력 및 변형을 고려한 용접평판부재의 최종강도 해석)

  • 김병일
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.331-340
    • /
    • 2000
  • For the rational and economic design of the structural elements of ships which is built using welding, the ultimate strength analyses of the plates having initial imperfections, such as welding residual stresses and strains, are needful. The welding deformation usually relied on approximative equations or based on expert's experience. But in this paper, for the thermal elasto-plastic analysis of plates, the finite element analysis was performed, based on initial strain method. In formulating the incremental analysis, unbalanced force terns were included. In the plastic domain during the incremental process, the 2nd order terns stress increment and yield stress increment were considered, so that time increment could be controlled for a more stable solution. The ultimate strength analysis program of the plates having initial imperfections was made. The ultimate strength analysis was carried out based on the results of the welding deformations of this paper. In the ultimate strength analysis the Rayleigh-Ritz method based on the minimum potential theory was used.

  • PDF

Advanced Finite Element Analysis for Linear Viscoelastic Problems of a Hereditary-Type Constitutive Law (유전적분형 선형 점탄성문제의 유한요소법에 의한 효율적 해석)

  • 심우진;이성희
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.103-114
    • /
    • 1993
  • An advanced time-domain finite element formulation is presented for the displacement and stress analysis of isotropic, linear viscoelastic problems of a hereditary-type constitutive law. The semidiscrete finite element method with linear time-stepping scheme and an elastic-viscoelastic correspondence principle are used in the theoretical development. An efficient treatment of hereditary integral is introduced to improve the numerical accuracy, to reduce the computation time, and to avoid the use of large memory storage. Two-dimensional numerical examples of plane strain and plane stress are solved under the assumption on the material property of being elastic in dilatation and like three-element Voigt model in distorsion, and compared with the analytical solutions and the past numerical results to show the versatility and efficiency of the proposed method.

  • PDF

Fracture analysis and remaining life prediction of aluminium alloy 2014A plate panels with concentric stiffeners under fatigue loading

  • Murthy, A. Ramachandra;Mathew, Rakhi Sara;Palani, G.S.;Gopinath, Smitha;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.681-702
    • /
    • 2015
  • Fracture analysis and remaining life prediction has been carried out for aluminium alloy (Al 2014A) plate panels with concentric stiffener by varying sizes and positions under fatigue loading. Tension coupon tests and compact tension tests on 2014A have been carried out to evaluate mechanical properties and crack growth constants. Domain integral technique has been used to compute the Stress intensity factor (SIF) for various cases. Generalized empirical expressions for SIF have been derived for various positions of stiffener and size. From the study, it can be concluded that the remaining life for stiffened panel for particular size and position can be estimated by knowing the remaining life of corresponding unstiffened panel.

Analysis of Stress-Strain Hysteresis Behavior in Metal Composites (단섬유 금속복합재료의 응력-변형률 히스테리시스 거동 해석)

  • 김홍건
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.132-139
    • /
    • 1997
  • The strengthening mechanism of short fiber or whisker reinforced metal matrix composites has been studied by a continuum mechanics treatment utilizing finite element analysis (FEM). To assess the tensile and compressive constitutive responses, a constraint-unconstraint comparative study based on stree-strain hysteresis loop has been performed. For analysis procedures, the aligned axisymmetric single fiber model and the stress grouping technique have been implemented to evaluate the domain-based field quantities. Results indicated that the development of significant triaxial stresses within the matrix both for the tensile and compressive loading, due to the constraint imposed by reinforcements, provides and important contribution to strengthening. It was also found that fiber stresses are not only sensitive to the fiber/fiber interaction effects but also substantially contribute to the composite strengthening both for the tensile and compressive loading.

  • PDF

Hysterisis Investigation of Magnetorheological Fluid Using Preisach Model (Preisach 모델을 이용한 MR 유체의 히스테리시스 특성 고찰)

  • Han, Y.M.;Lim, K.H.;Choi, S.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.350-355
    • /
    • 2005
  • This paper presents a new approach for hysteresis modeling of a magnetorheological (MR) fluid. The field-dependent hysteresis of MR fluid is investigated using the Preisach model. The commercial MR Product (MRF-132LD, Lord Corporation) is employed. Its field-dependent shear stress is then obtained using a rheometer (MCR 300, Physica). In order to show the applicability of the Preisach model to the MR fluid, two significant Properties; the minor loop property and the wiping-out property are experimentally examined. Subsequently, the Preisach model for the MR fluid is identified using experimental first order descending (FOD) curves in discrete manner. The effectiveness of the identified hysteresis model is verified in the time domain by comparing the predicted field-dependent shear stress with the measured one. In addition, the hysteresis model proposed in this work is compared to Bingham model.

  • PDF

Phonetic and Phonological Constraints on Fixed Meters of English Poetry (영시 정형율에 나타난 음성, 음운론적 제약)

  • Son, Il-Gwon
    • Proceedings of the KSPS conference
    • /
    • 2004.05a
    • /
    • pp.161-163
    • /
    • 2004
  • This study concerns the constraints of English Poetic Fixed Meter. In English poems, the metrical pattern doesn't always match the linguistic stress on the lines. These mismatches are found differently among the poets. For the lexical stress mismatched with the weak metrical position, ${\ast}W{\Rightarrow}$ Strength is established by the concept of the strong syllable. The peaked monosyllabic word mismatched with weak metrical position is divided according to which side of the boundary of a phonological domain it is adjacent to. In most poets, ${\ast}$Peak] is ranked higher than ${\ast}$[Peak. In Shakespeare, Adjacency Constraint is ranked higher than ${\ast}$Peak].

  • PDF

Axisymmetric analysis of multi-layered transversely isotropic elastic media with general interlayer and support conditions

  • Lee, J.S.;Jiang, L.Z.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.49-62
    • /
    • 1994
  • Based on the transfer matrix approach and integral transforms, a solution method is developed for the stress analysis of axisymmetrically loaded transversely isotropic elastic media with generalized interlayer and support conditions. Transfer functions (Green's functions in the transformed domain) are obtained in explicit integral form. For several problems of practical interest with different loading and support conditions, solutions are worked out in detail. For the inversion operation, an efficient technique is introduced to remedy the slow convergence of numerical integrals involving oscillating functions. Several illustrative examples are considered and numerical results are presented.

Thermomechanical deformation in porous generalized thermoelastic body with variable material properties

  • Kumar, Rajneesh;Devi, Savita
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.285-300
    • /
    • 2010
  • The two-dimensional deformation of a homogeneous, isotropic thermoelastic half-space with voids with variable modulus of elasticity and thermal conductivity subjected to thermomechanical boundary conditions has been investigated. The formulation is applied to the coupled theory(CT) as well as generalized theories: Lord and Shulman theory with one relaxation time(LS), Green and Lindsay theory with two relaxation times(GL) Chandrasekharaiah and Tzou theory with dual phase lag(C-T) of thermoelasticity. The Laplace and Fourier transforms techniques are used to solve the problem. As an application, concentrated/uniformly distributed mechanical or thermal sources have been considered to illustrate the utility of the approach. The integral transforms have been inverted by using a numerical inversion technique to obtain the components of displacement, stress, changes in volume fraction field and temperature distribution in the physical domain. The effect of dependence of modulus of elasticity on the components of stress, changes in volume fraction field and temperature distribution are illustrated graphically for a specific model. Different special cases are also deduced.

A Study on Dynamic Responses of Tracked Vehicle on Extremely Soft Cohesive Soil (점착성 연약지반 주행차량의 동적거동 연구)

  • Kim, Hyung-Woo;Hong, Sup;Choi, Jong-Su
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.323-332
    • /
    • 2004
  • This paper concerns about a study on dynamic responses of tracked vehicle on soft cohesive soil. For dynamic analyses of tracked vehicle, two different models were adopted, i.e. a single-body model and a multi-body model. The single-body vehicle model was assumed as a rigid body with 6-dof. The multi-body vehicle was modeled by using a commercial software, RecurDyn-LM. For the both models properties of cohesive soft soil were modeled by means of three relationships: pressure to sinkage, shear displacement to shear stress, and shear displacement to dynamic sinkage. Traveling performances of the two tracked vehicle models were compared through dynamic analyses in time domain.

The assessment of the performance of drug-eluting stent using computational fluid dynamics

  • Seo, Tae-Won;Barakat, Abdul I.
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.281-288
    • /
    • 2009
  • Numerical investigations have been conducted on the assessment of the performance of drug-eluting stent. Computational fluid dynamics is applied to investigate the flow disturbances and drug distributions released from the stent in the immediate vicinity of the given idealized stent in the protrusion into the flow domain. Our simulations have revealed the drug concentration in the flow field due to the presence of a drug-eluting stent within an arterial segment. Wall shear stress increases with Reynolds number for a given stent diameter, while it increases with stent diameter for a given Reynolds number. The drug concentration is dependent on both Reynolds number and stent geometry. In pulsatile flow, the minimum drug concentration in the zone of inter-wire spacing occurs at the maximum acceleration of the inlet flow while the maximum drug concentration gains at the maximum deceleration of the inlet flow. These results provide an understanding of the flow physics in the vicinity of drug-eluting stents and suggest strategies for optimal performance of drug-eluting stent to minimize flow disturbance.