• 제목/요약/키워드: stress distribution function

검색결과 409건 처리시간 0.026초

ESTIMATION OF SCALE PARAMETER AND P(Y < X) FROM RAYLEIGH DISTRIBUTION

  • Kim, Chan-Soo;Chung, Youn-Shik
    • Journal of the Korean Statistical Society
    • /
    • 제32권3호
    • /
    • pp.289-298
    • /
    • 2003
  • We consider the estimation problem for the scale parameter of the Rayleigh distribution using weighted balanced loss function (WBLF) which reflects both goodness of fit and precision. Under WBLF, we obtain the optimal estimator which creates a kind of balance between Bayesian and non-Bayesian estimation. We also deal with the estimation of R = P(Y < X) when Y and X are two independent but not identically distributed Rayleigh distribution under squared error loss function.

A NOVEL WEIBULL MARSHALL-OLKIN POWER LOMAX DISTRIBUTION: PROPERTIES AND APPLICATIONS TO MEDICINE AND ENGINEERING

  • ELHAM MORADI;ZAHRA SHOKOOH GHAZANI
    • Journal of applied mathematics & informatics
    • /
    • 제41권6호
    • /
    • pp.1275-1301
    • /
    • 2023
  • This paper introduced the Weibull Marshall-Olkin Power Lomax (WMOPL) distribution. The statistical aspects of the proposed model are presented, such as the quantiles function, moments, mean residual life and mean deviations, variance, skewness, kurtosis, and reliability measures like the residual life function, and stress-strength reliability. The parameters of the new model are estimated using six different methods, and simulation research is illustrated to compare the six estimation methods. In the end, two real data sets show that the Weibull Marshall-Olkin Power Lomax distribution is flexible and suitable for modeling data.

Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포 (Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method)

  • 손기선;이성학;백성기
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF

구형 공동을 가진 횡 방향 등방성매체의 응력 분포에 관한 연구 (Investigation of the Stress Distributions in a Transversely Isotropic Medium Containing a Spheroidal Cavity)

  • 이윤복;전종균
    • 전산구조공학
    • /
    • 제10권1호
    • /
    • pp.159-171
    • /
    • 1997
  • 본 연구에서는 구형 공동을 가진 횡 방향 등방성 매체(transversely isotropic medium)에 한 방향의 인장과 평면 전단력을 각각 가한 후의 응력 분포를 고찰하였다. 이 연구에서 사용된 접근방법은 이론적 해석과 수치해석적 고찰을 병행하였다. 이론적 해석방법은 1종, 2종 Legendre함수를 이용한 potential function에 기초하였고, 수치해석적 방법은 유한차분법을 이용하였다. 다섯가지 이방성 재료에 대하여 두가지 하중 조건에 의한 수치해석 결과가 제시되었다.

  • PDF

근사적 가중함수를 이용한 보강된 균열평판의 응력강도계수 계산에 대한 연구 (A study on the calculation of stress intensity factor for a patched crack using approximate weight function)

  • 김종호;이순복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.123-128
    • /
    • 2000
  • A cracked-plate with a patch bonded on one side is treated with a crack-bridging model: assuming continuous distribution of springs acting between crack surfaces. the approximate weight function was introduced to obtain the stress intensity factor of patched crack subjected to residual stress or non-uniform stress. The stress intensity factors for the partially patched crack within finite plate or the patched crack initiated from a notch were successfully obtained by numerical calculation.

  • PDF

일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성 (Characteristics of Parameters for the Distribution of fatigue Crack Growth Lives wider Constant Stress Intensity factor Control)

  • 김선진
    • 한국해양공학회지
    • /
    • 제17권2호
    • /
    • pp.54-59
    • /
    • 2003
  • The characteristics of the parameters for the probability distribution of fatigue crack growth life, using the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length equals the number of cycle curves that are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratios of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth life seems to follow the 3-parameter Wiubull,, showing a slight dependence on specimen thickness and stress intensity level. The shape parameter, $\alpha$, does not show the dependency of thickness and stress intensity level, but the scale parameter, $\beta$, and location parameter, ${\gamma}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

일정 응력확대계수 제어하의 피로균열전파수명 분포의 파라메터 특성에 관하여 (Characteristics of Parameters for the Distribution of Fatigue Crack Growth Lives under Constant Stress Intensity Factor Control)

  • 김선진;김영식;정현철
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.301-306
    • /
    • 2002
  • The characteristics of parameters for the probability distribution of fatigue crack growth lives by the non-Gaussian random process simulation method is investigated. In this paper, the material resistance to fatigue crack growth is treated as a spatial random process, which varies randomly on the crack surface. Using the previous experimental data, the crack length - the number of cycles curves are simulated. The results are obtained for constant stress intensity factor range conditions with stress ratio of R=0.2, three specimen thickness of 6, 12 and 18mm, and the four stress intensity level. The probability distribution function of fatigue crack growth lives seems to follow the 3-parameter Wiubull and shows a slight dependence on specimen thickness and stress intensity level. The shape parameter, ${\alpha}$, does not show the dependency of thickness and stress intensity level, but the scale parameter, ${\beta}$, and location parameter, ${\upsilon}$, are decreased by increasing the specimen thickness and stress intensity level. The slope for the stress intensity level is larger than the specimen thickness.

  • PDF

확장변위함수와 불연속함수를 적용한 Mesh-free 균열해석기법 (A Mesh-free Crack Analysis Technique Using Enriched Approximation and Discontinuity Function)

  • 이상호;윤영철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.335-342
    • /
    • 2001
  • In this paper, an improved Element-Free Galerkin (EFG) method is proposed by adding enrichment function to the standard EFG approximation and a discontinuity function is implemented in constructing the shape function across the crack surface. In this method, the singularity and the discontinuity of the crack are efficiently modeled by using initial node distribution to evaluate reliable stress intensity factor, though the standard EFG method requires placing additional nodes near the crack tip. The proposed method enables the initial node distribution to be kept without any additional nodal d.o.f. and expresses the asymptotic stress field near the crack tip successfully. Numerical example verifies the improvement and the effectiveness of the method.

  • PDF

임프란트 매식시 해면골질의 차이에 따른 치밀골 상 응력분석 (The FEM Analysis on the Crestal Cortical Bone around the Implant according to the Cancellous Bone Density and Loading Positions)

  • 정신영;김창현
    • 구강회복응용과학지
    • /
    • 제23권1호
    • /
    • pp.69-78
    • /
    • 2007
  • This study was performed to compare the stress distribution pattern in the crestal cortical bone and cancellous bone using 3-dimensional finite element stress analysis when 2 different Young's modulus(high modulus, model 1; low modulus, model 2) of cancellous bone was assumed. For the analysis, a finite element model was designed to have two square-threaded implants fused together and located at first and second molar area. Stress distribution was observed when vertical load of 200N was applied at several points on the occlusal surfaces of the implants, including central fossa, points 1.5mm, 2mm, 3mm and 3.5mm buccally away from central fossa. The results were as follows; 1. In both model, the maximum Von-Mises stress in the crestal cortical bone was greater when the load was applied at the central point, points 1.5mm and 2mm buccally away from central fossa than other cases. 2. In the cortical bone around first and second molar, model 2 showed greater Von-Mises stress than model 1. It is concluded that when the occlusal contact is afforded, the distribution of stress varies depending on the density of cancellous bone and the location of loading. More favorable stress distribution is expected when the contact load is applied within the diameter of fixtures.

Accelerated life test plan under modified ramp-stress loading with two stress factors

  • Srivastava, P.W.;Gupta, T.
    • International Journal of Reliability and Applications
    • /
    • 제18권2호
    • /
    • pp.21-44
    • /
    • 2017
  • Accelerated life tests (ALTs) are frequently used in manufacturing industries to evaluate the reliability of products within a reasonable amount of time and cost. Test units are subjected to elevated stresses which yield quick failures. Most of the previous works on designing ALT plans are focused on tests that involve a single stress. Many times more than one stress factor influence the product's functioning. This paper deals with the design of optimum modified ramp-stress ALT plan for Burr type XII distribution with Type-I censoring under two stress factors, viz., voltage and switching rate each at two levels- low and high. It is assumed that usage time to failure is power law function of switching rate, and voltage increases linearly with time according to modified ramp-stress scheme. The cumulative exposure model is used to incorporate the effect of changing stresses. The optimum plan is devised using D-optimality criterion wherein the ${\log}_{10}$ of the determinant of Fisher information matrix is maximized. The method developed has been explained using a numerical example and sensitivity carried out.

  • PDF