• Title/Summary/Keyword: stress crack behavior

Search Result 968, Processing Time 0.035 seconds

A Behavior of Fatigue Crack Growth of Nonmagnetic Steel with Large Grain Size (조대조직을 갖는 비자성강의 피로균열진전거동)

  • Lee, Jong-Hyung;Choi, Seong-Dae;Cheong, Seon-Hwan;Kwon, Hyun-Kyu;Yang, Seong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.88-94
    • /
    • 2004
  • High manganese steel was maintained stability of Non-Magnetics performance. Fatigue tests were carried out under constant stress amplitude, using a non-magnetic high manganese steel. The fatigue crack growth mechanism of the high manganese steel was clarified from results such as observation of crack growth path and fracture surface. The result of getting this study was shown as following: 1) Remarkably ${\Delta}Kth$ of the high manganese steel is big with about 3 times of the general steel product. 2) In the low ${\Delta}K$ value region, da/dN is dependent on Kmax, and in the high ${\Delta}K$ value region, it is dependent on ${\Delta}Keff$. The reason of this behavior is crack closure due to fracture surface roughness and fretting oxide. 3) It seems to ease the stress concentration of crack tip crack growth behavior in the ${\Delta}Kth$ vicinity by the generation of the secondary crack.

  • PDF

Fatigue Crack Closure and Propagation Behavior Under Mixed-Mode Loading Observed by the Direct Measuring Method (직접측정법을 이용한 혼합모드 하중 하에서 피로균열의 닫힘과 전파거동)

  • Song Sam Hong;Seo Ki Jeong;Lee Jeong Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.152-158
    • /
    • 2005
  • The stress conditions acting on the practical structure are complex, and thus most cracks existing in the practical structures are under mixed-mode loading conditions. The effect of shear load component of mixed-mode loading acts more greatly in the stage of crack initiation and initial propagation than crack propagation stage. Hence, research on the behavior in the stage of crack initiation and initial propagation need to be examined in order to evaluate behavior of mixed-mode fatigue cracks. In this study, the crack tip displacement(CTD) was measured by using the direct measuring method(DMM). We examined the behavior at crack tip by determining crack opening load$(P_{op})$. From the test results, the propagation behavior of mixed-mode fatigue cracks was evaluated by considering mixed-mode crack closure. Also, we examined the characteristic of crack propagation under mixed-mode loading with crack propagation direction.

The Effect of Stress Ratio on Fatigue Crack Propagation Rate in SA516/70 Pressure Vessel Steel at Low Temperature (SA516/70 압력용기 강의 저온 피로균열 진전 속도에 미치는 응력비의 영향)

  • 박경동;김정호;최병국;임만배
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • The fatigue crack growth behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $-60^{\circ}C$,$-80^{\circ}C$ and $-100^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

The Effect of Stress Ratio on the Surface Crack Growth Behavior in 7075-T651 Aluminum Alloy (7075-T651 Al合金의 表面균열進展에 미치는 應力比의 影響)

  • 박영조;김정규;신용승;김성민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.62-69
    • /
    • 1986
  • Fatigue surface crack growth was studied in 7075-T651 aluminum alloy plates subjected largely to bending loads. The surface crack length and its depth were measurement by the unloading elastic compliance method. The surface crack growth rate dc/dN, on the surface and da/dN, in the depth direction were obtained by the secant method. The stress intensity factor range .DELTA.K was computed by means of Newman and Raju equation. The aspect ratio a/c was presented in form of a/c=0.815-0.853(a/T). The effect of the stress ratio on the stable surface crack growth rates under increasing .DELTA.T is larger in lower .DELTA.K, while the relation between dc/dN, da/dN and the effective stress intensity factor range .DELTA.K$_{eff}$ is weakly dependent on the stress ratio.o.

The Effect of Stress Ratio on Fatigue Crack Propagation Rate in SA516/60 Pressure Vessel Steel at Low Temperature (저온 압력용기용 SA516/60강의 피로균열 진전 속도에 미치는 응력비의 영향)

  • 박경동;하경준;박상오
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.80-87
    • /
    • 2001
  • The fatigue crack growth behavior of the SA516/60 steel which is used for pressure vessels was examined experimentally at room temperature $25^{\circ}C, -30^{\circ}C, -60^{\circ}C, -80^{\circ}C, -100^{\circ}C$ and -l2$0^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ΔK was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ΔK. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

The Effect of Temperature on Fatigue Fracture of Pressure Vessel Steel for Vehicle (차량용 압력용기용 강의 피로파괴에 미치는 온도의 영향)

  • 박경동;김영대;김형자
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.219-226
    • /
    • 2003
  • The fatigue crack growth behavior of the SA516/60 steel used for pressure vessels was examined experimentally at room temperatures $25^{\circ}C$,$-30^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, $-100^{\circ}C$ and $-120^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. fatigue crack propagation rate da/dN related with stress intensity factor range $\Delta$K was influenced by stress ratio in stable than fatigue crack growth (Region II) with an increase in $\Delta$K. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are explained mainly by the crack closure and the strengthening due to the plasticity near the crack tip and roughness of the crack faces induced.

Determination and Applications of U and K$_{op}$ for Crack Closure Evaluation under Mixed-mode loading (혼합모드 하중 하에서 균열닫힘 평가에 대한 K$_{op}$와 U의 결정과 적용)

  • Song Samhong;Seo Kijeong;Lee Jeongmoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.178-185
    • /
    • 2005
  • Crack tip displacement is originated by tensile stress component, s and shear stress component, t on pure Mode I and pure Mode II. The crack tip displacement(CTD) depends on combined types of different two stress components under mixed-mode loading conditions (MMLC). Thus, the analysis of crack tip displacement must be CTD vector, dv which is composition of ds and dt under MMLC. In this paper, various effects of MMLC on the crack closure are studied experimentally. The crack closure magnitude is calculated from the information of crack tip displacement under MMLC. This information has been obtained from the high resolution optical microscope in direct observations of crack displacement behavior at the crack tip. Observed crack tip displacement is analyzed by using CTD vector to determine crack opening load. The various effects of MMLC on the crack closure are explained using crack opening ratio with crack length and mode mixture. The effective stress intensity factor considering crack closure is also discussed.

Analysis of Fatigue Crack Growth Behavior in the Stiffened Panels with Bonded Symmetric Stiffener (접착이음 보강판의 피로거동해석)

  • 이환우;강선규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.168-172
    • /
    • 2000
  • The stiffened panel is representative of a large portion of aircraft construction and therefore has much practical importance. In this paper, the influence of various shape parameters on the stress intensity factors and the fatigue crack growth in the panels with bonded composite stiffeners are studied experimentally. Results are presented as crack growth rates for various values of crack lengths, stiffness ratios, and stiffening Materials.

  • PDF

A Study on the Fatigue Crack Propagation Behavior by the Variation of Heat Treatment Temperature and Thickness in ATOS 55 Steel (ATOS 55강의 열처리 온도와 두께 변화에 따른 피로균열성장거동에 관한 연구)

  • 오환교
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.15-20
    • /
    • 1997
  • This study is to investigate the behavior of fatigue crack growth with ATOS 55 steel which can be applied to the commercial car Dump Frame. It is to obtain the material coefficients after tensile and fatigue crack growth test with the variation of thickness or heat treatment. Also, that is proved the Pari's law by experiment. The summarized results are as follows ; 1) Increasing thickness, tensile and yield strength measured highly regardless to heat treatment and measured lowly as variation of heat treatment temperature. 2) Specimen of thickness 8.0㎜ measured the faster of crack growth rate than another thickness according to the results of experiment. It was the different of stress conditions in crack tip. 3) It was found that the experimental constant m was range of 2∼5 to the relationship between fatigue crack growth rate and stress intensity factor range. Also, it was to prove the Paris's law by the experiment.

  • PDF

Analysis of Crack Behavior of Brazed Interface in Dissimilar Materials using BEM (이종재 브레이징 계면에서의 균열거동 해석)

  • 오환섭;김시현;김성재;양인수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.91-97
    • /
    • 2002
  • Applications of brazing in the studying fields such as high-speed machining are very increasing in various industry fields. Therefore, applying to the fracture mechanics by numerical analysis method is very important to analyse the crack problem dissimilar materials in brazed interface. In this study, stress intensity factor(SIF) is analysed to investigate crack behavior on the crack tip of dissimilar materials in brazed interface such as a hardmetal and a HSS by two dimensional(2-D) BEM. Kelvin's solution was used as a fundamental solution in BEM analysis and stress extrapolation method was used to determine SIF.