• Title/Summary/Keyword: stress corrosion crack

Search Result 276, Processing Time 0.022 seconds

INFLUENCE OF SIGNAL-TO-NOISE RATIO ON EDDY CURRENT SIGNALS OF CRACKS IN STEAM GENERATOR TUBES

  • Hur, Do Haeng;Choi, Myung Sik;Shim, Hee-Sang;Lee, Deok Hyun;Yoo, One
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.883-888
    • /
    • 2014
  • This work presents the influence of noise originating from the tube itself on the detectability and sizing accuracy for laboratory-induced outer diameter axial cracks in nuclear steam generator tubes. The variations of signal amplitude and phase angle of the same cracks were analyzed when increasing the signal-to-noise ratio of the tube itself from 9 to 18. It was experimentally verified that the detectability for small cracks was enhanced by increasing the signal-to-noise ratio. The phase angle also rotated to a value representing the actual position and depth of a crack when increasing the signal-to-noise ratio.

Finite Element Modeling of Perturbation Fields due to Colonies of Stress Corrosion Cracks(SCCs) in a Gas Transmission Pipeline (가스공급배관에서 응력부식균열 군에 의해 교란된 자속의 유한요소 모델링)

  • Yang, Sun-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.493-500
    • /
    • 2001
  • The detection of axial cracks using conventional MFL pig is a significant challenge in the gas pipeline inspection. In this study, a technique using interaction of circumferentially induced torrents with axial stress corrosion crack is presented. The feasibility of this technique is investigated using finite element modeling. Finite element analysis of such interaction is a difficult problem in terms of both computation time and memory requirements. The challenges arise due to the nonlinearity of material properties, the small sire of tight cracks relative to that of the magnetizer, and also time stepping involved in modeling velocity effects. This paper presents an approach based on perturbation methods. The overall analysis procedure is divided into 4 simple steps that can be performed sequentially. Modeling results show that this technique can effectively detect colonies of SCC as well as single SCC.

  • PDF

Identification of nonregular indication according to change of grain size/surface geometry in nuclear power plant (NPP) reactor vessel (RV)-upper head alloy 690 penetration

  • Kim, Kyungcho;Kim, Changkuen;Kim, Hunhee;Kim, Hak-Joon;Kim, Jin-Gyum;Jhung, Myungjo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1524-1536
    • /
    • 2017
  • During the fabrication process of reactor vessel head penetration (RVHP), the grain size of the tube material can be changed by hot or cold work and the inner side of the tube can also be shrunk due to welding outside of the tube. Several nonregular time-of-flight diffraction (TOFD) signals were found because of deformed grains. In this paper, an investigation of nonregular TOFD indications acquired from RVHP tubes using experiments and computer simulation was performed in order to identify and distinguish TOFD signals by coarse grains from those by Primary Water Stress Corrosion Crack (PWSCC). For proper understanding of the nonregular TOFD indications, microstructural analysis of the RVHP tubes and prediction of signals scattered from the grains using Finite Element Method (FEM) simulation were performed. Prediction of ultrasonic signals from the various sizes of side drilled holes to find equivalent flaws, determination of the size of the nonregular TOFD indications from the coarse grains, and experimental investigation of TOFD signals from coarse grain and shrinkage geometry to identify PWSCC signals were performed. From the computer simulation and experimental investigation results, it was possible to obtain the nonregular TOFD indications from the coarse grains in the alloy 690 penetration tube of RVHP; these nonregular indications may be classified as PWSCC. By comparing the computer simulation and experimental results, we were able to confirm a clear difference between the coarse grain signal and the PWSCC signal.

Study on the Crack Occurrence and Progress by Durability Test for Vehicular Turbine Housing (차량용 터빈 하우징의 내구시험에 의한 균열 발생 및 진행에 대한 연구)

  • Shin, Sang-Yun;Lee, Do-Hoon;Won, Soon-Jea;Kim, Dong-Hyoung;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.38 no.2
    • /
    • pp.48-54
    • /
    • 2018
  • To improve the durability of the turbocharger, it is important to suppress cracking of the turbine housing; therefore, we investigated the initiation and growth of these cracks. First, we initiated a crack in the turbine housing using endurance experiments. After the endurance test, cracks mainly occurred in the valve seat, the nozzle area, and the scroll part of the turbine housing. The results of a fracture analysis of the cracks showed that cracks in the valve seat were initiated by fatigue fracture. This seems to be caused by the accumulation of mechanical and thermal stresses due to vibration of the turbine wheel and high-temperature exhaust gas. Also, cracks in nozzle and scroll area were initiated by intergranular corrosion due to the exhaust gas. Thus, although there are differences in the cause of initiation according to the site, a concentric waveform was observed in all fracture planes. This phenomenon indicates that cracks gradually grow due to repeated stress changes, and the main causes are the temperature difference of the exhaust gas and the vibration caused by the turbine shaft.

A Study on the Chemical Cleaning Process and Its Qualification Test by Eddy Current Testing

  • Shin, Ki Seok;Cheon, Keun Young;Nam, Min Woo;Min, Kyong Mahn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.6
    • /
    • pp.511-518
    • /
    • 2013
  • Steam Generator (SG) tube, as a barrier isolating the primary coolant system from the secondary side of nuclear power plants (NPP), must maintain the structural integrity for the public safety and their efficient power generation. So, SG tubes are subject to the periodic examination and the repairs if needed so that any defective tubes are not in service. Recently, corrosion related degradations were detected in the tubes of the domestic OPR-1000 NPP, as a form of axially oriented outer diameter stress corrosion cracking (ODSCC). According to the studies on the factors causing the heat fouling as well as developing corrosion cracking, densely scaled deposits on the secondary side of the SG tubes are mainly known to be problematic causing the adverse impacts against the soundness of the SG tubes [1]. Therefore, the processes of various cleaning methods efficiently to dissolve and remove the deposits have been applied as well as it is imperative to maintain the structural integrity of the tubes after exposing to the cleaning agent. So qualification test (QT) should be carried out to assess the perfection of the chemical cleaning and QT is to apply the processes and to do ECT. In this paper, the chemical cleaning processes to dissolve and remove the scaled deposits are introduced and results of ECT on the artificial crack specimens to determine the effectiveness of those processes are represented.

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

Failure Assessment and Strength of Steam Generator Tubes with Wall Thinning (증기발생기 전열관 감육부의 강도 및 손상평가)

  • Seong, Ki-Yong;Ahn, Seok-Hwan;Yoon, Ja-Moon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.50-59
    • /
    • 2007
  • Steam generator tubes are degraded from wear, stress corrosion cracking, rupture and fatigue and so on. Therefore, the failure assessment of steam generator tube is very important for the integrity of energy plants. In the steam generator tubes, sometimes, the local wall thinning may result from severe degradations such as erosion-corrosion damage and wear due to vibration. In this paper, the elasto-plastic analysis was performed by FE code ANSYS on steam generator tubes with wall thinning. Also, the four-point bending tests were performed on the wall thinned specimens, and then it was compared with the analysis results. We evaluated the failure mode, fracture strength and fracture behavior from the experiment and FE analysis. Also, it was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area from FE analysis.

Effect of Hydrogen on Dezincification of Cu-Zn Brass (Cu-Zn 황동에서 수소가 탈아연 부식에 미치는 영향)

  • Choe, Byung Hak;Lee, Bum Gyu;Jang, Hyeon Su;Jeon, Woo Il;Park, Yong Sung;Lim, Jae Kyun;Lee, Jin Hee;Park, Chan Sung;Kim, Jin Pyo
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.172-178
    • /
    • 2017
  • The aim of this study is to consider the effect hydrogen on dezincification behavior of Cu-Zn alloys. The investigations include microstructural observations with scanning electron microscope and chemical composition analysis with energy dispersive spectrometer. The dezincification layer was found to occur in high pressure hydrogen atmosphere, not in air atmosphere. In addition, the layers penetrated into the inner side along the grain boundaries in the case of hydrogen condition. The shape of the dezincification layers was porous because of Zn dissolution from the ${\alpha}$ or ${\beta}$ phase. In the case of stress corrosion cracks formed in the Cu-Zn microstructure, the dezincification phenomenon with porous voids was also accompanied by grain boundary cracking.

Failure Analysis of an Inlet Pipe of a Governor Valve in a Steam Turbine of a District Heating System (지역난방 증기 터빈 내 조속기 밸브 Inlet pipe 파손 원인 분석)

  • Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2022
  • The objective of this study was to perform failure analysis of an inlet pipe located in a governor valve of a steam turbine in a district heating system. During the operation, the temperature of the governor valve was increased to as high as ~500 ℃, which induced thermal expansion of the inlet pipe along both axial and radial directions. While the inlet pipe did not have contact with the valve seat, the side plane of the upside was constrained by the casing part, which led the inlet pipe to experience stress field in the form of fatigue and creep. The primary crack was initiated at about 30 mm below the top where the complex stress field was anticipated. These results suggest that the main failure mechanism is a combination of thermal fatigue and creep during the operation supported by the observation of apparent beach marks on the fracture surface and pores near the cracks, respectively.

Fatigue Characteristics and FEM Analysis of $18\%$Ni(200) Maraging Steel (18Ni 마르에이징강의 피로특성 및 유한요소해석)

  • Choi Byung Ki;Jang Kyeung Cheun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.75-82
    • /
    • 2005
  • Recently the needs of high reliable substances of high strength and high ductility are gradually increased with the development of aerospace industry. The characteristics of maraging steel has high ductililty, formability, corrosion resistant and high temperature strength and is easy to fabricate, weld and treat with heat, and maintain an invariable size even after heat treatment. e steels are furnished in the solution annealed condition and they achieve full properties through martensitic precipitation aging a relatively simple, low temperature heat treatment. As is true of the heat treating procedures, aging is a time/temperature dependent reaction. Therefore, the objective of this stud)'was consideration of fatigue characteristics according as Nb(niobium) content and time/temperature of heat treatment change. Also the stress analysis, fatigue lift, and stress intensity factor were compared with experiment results and FEA(finite element analysis) result. The maximum ftresses of)( Y, and Z axis direction showed about $2.12\times$10$^{2}$MPa, $4.40\times$10$^{2}$MPa and $1.32\times$10$^{2}$MPa respectively. The fatigue lives showed about $7\%$ lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about $3.5~ 10\%$ than that of the experiment result showing that the longer fatigue crack ten添 the hi인or error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.