• Title/Summary/Keyword: stress corrosion crack

Search Result 276, Processing Time 0.026 seconds

A Study on the Subcritical Crack Growth and the Life Prediction for Sintered Silicon Carbide (소결탄화규소의 완속균열성장 및 수명예측에 관한 연구)

  • 한원식;김영욱;이상호;장감용;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.4
    • /
    • pp.26-32
    • /
    • 1985
  • The subcritical crack growth of sintered SiC is investigated under various corrosive atmospheres such as distilled water Murakami solution and saturated KOH solution. The KI-V diagrams are obtained by the load relaxation method and incremental displacement rate method using the double torsion technique. The obtained fracture mechanics parameters (n) of sintered SiC are 79 in Murakami solution and 39 in saturated KOH solution. These data indicate that the subcritical crack growth of sintered SiC is taking place in these two conditions and the stress-corrosion cracking is suggested to be the mechanism. With these KI-V diagrams the life of sintered SiC in these conditions is predicted.

  • PDF

Analysis of Oxide Layers in Phase Boundary Crack of Cast Austenitic Stainless Steel (주조 오스테나이트 스테인리스강 상경계 균열부 산화물 분석)

  • Min-Jae Choi;Sung-Woo Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.171-178
    • /
    • 2023
  • For the phase boundary crack found in the gasket made of cast austenitic stainless steel in the nuclear power plant, the oxide layers were analyzed through SEM and TEM. The results showed that cracks initiated and propagated along the austenite/δ-ferrite phase boundary, the propagation path was changed to penetrate the inside of the phase. The oxide layer located at the periphery of the crack along the phase boundary was identified as a complex multi-layered spinel structure, and Cr-rich carbides were also detected in the oxide. The cracks that propagated inside the austenite matrix were attributed to the presence of high external stresses and impurities.

Study for Fracture in the Last Stage Blade of a Low Pressure Turbine (화력발전용 저압터빈 최종 단 블레이드에 대한 파손 연구)

  • Lee, Gil Jae;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.423-428
    • /
    • 2016
  • The last stage blades of a low pressure (LP) turbine get frequently fractured because of stress corrosion cracking. This is because they operate in a severe corrosive environment that is caused by the impurities dissolved in condensed steam and high stress due to high speed rotation. To improve the reliability of the blades under severe conditions, 12% Cr martensitic stainless steel, having excellent corrosion resistance and higher strength, is widely used as the blade material. This paper shows the result of root cause analysis on a blade which got fractured suddenly during normal operation. Testing of mechanical properties and microstructure examination were performed on the fractured blade and on a blade in sound condition. The results of testing of mechanical properties of the fractured blade showed that the hardness were higher but impact energy were lower, and were not meeting the criteria as per the material certificate specification. This result showed that the fractured blade became embrittled. The branch-type crack was found to have propagated through the grain boundary and components of chloride and sulfur were detected on the fractured surface. Based on these results, the root cause of fracture was confirmed to be stress corrosion cracking.

A Study on Fatigue Crack Behavior of Metal Matrix Composites for Automobile Engine (자동차엔진용 금속기 복합재료의 피로균열거동에 관한 연구)

  • 박원조;허선철;정재욱;이해우;부명환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.140-146
    • /
    • 2003
  • Metal matrix composites had generated a lot of interest in recent time because of their high specific strength and stiffness in specific properties. It was also highlighted as the material of frontier industry because strength, heat-resistance, corrosion-resistance and wear-resistance were superiored. In this study, the strength properties of $Al_{18}B_{4}O_{33}$/AC4CH composites were represented mixing the binder of $SiO_2$. It was also fabricated by squeeze casting. $Al_{18}B_{4}O_{33}$/AC4CH was fabricated at the melt temperature of $760^{\circ}C$, the perform temperature of $700^{\circ}C$ and mold temperature of $200^{\circ}C$ under the pressure of 83.4MPa. Consequently, fatigue life was observed roughly in the order of AC4CH> nobiner> $SiO_2$, independently on crack propagation direction and stress ratio.

Study on Corrosion Problems in PEMFC Cooling System (PEMFC 냉각 시스템의 물부식 방지에 관한 연구)

  • Park, Kwang-Jin;Jeong, Jae-Hwa;Kim, Jung-Hyun;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1188-1193
    • /
    • 2007
  • This study focuses on the corrosion problems of STS316(stainless steel 316) tube for the cooling system of PEMFC (Proton Exchange Membrane Fuel Cell) operation. Deionized water which is highly corrosive is used especially for cooling agent of PEMFC to eliminate electrical conductivity, The tensile stress analysis was performed to check the change of mechanical strength of cooling line and pH of the water was monitored for the observation of extent of corrosion at simulated PEMFC operating condition. When STS316 tube was exposed to deionized water for 500 hours, substantial cracks were found on the surface and the pH of water was decreased from 6.8 to 5.8. For prevention of corrosion problems, the STS316 was coated by three kinds of fluororesin such as PTFE, FEP and ETFE. Among the coating materials, PTFE was the most protective in corrosive environment and was maintained the mechanical strength. To lower the cost, the same experimental analyses were carried out for iron tubes and the result will be discussed in detail.

An Investigation of Stress Corrosion Cracking Charactistics of SUS 304 Stainless Steel in $MgCl_2$ Aqueous Solution ($MgCl_2$ 수용액 중에서 SUS 304강의 SCC 특성에 관한 연구)

  • 임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.133-136
    • /
    • 1984
  • The characteristics of the stress corrosion cracking of SUS 304 stainless steel were studied with the specimens of the constant displacement type under the environment of various MgCl sub(2) aqueous solutions. Main results obtained are as follows; 1) Latent time of crack initiations is delayed in the SCC under low condition of initial stress intensity K sub(Ii) value. 2) SCC occurs owing to the passive film-rupture by both load and Cl ion under MgCl sub(2) boiled aqueous solution. 3) The susceptibility of SCC can be largely improved by reducing the temperature in case of the high concentration of MgCl sub(2) aqueous solution.

  • PDF

A study of the cause of metal failure in treatment of femur shaft fracture - Fractographical and clinical analysis of metal failure- (대퇴골 간부 골절시 사용한 금속물의 금속부전(Metal failure)의 기전에 대한 연구)

  • Jeon, Chun-Bae;Seo, Jae-Sung;Ahn, Jong-Chul;Ahn, Myun-Whan;Ihn, Joo-Chyl
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.1
    • /
    • pp.81-93
    • /
    • 1990
  • The author fractographically analyized the cause of metal failure(the first time this procedure has been used for this metal failure)and also analyized it clinically. In this study, I selected eight cases which have been analyized fractographically. In all these cases, the analysis was done after treatment of metal failure of implants internally fixed to femur shaft fractures at the Department of Orthopedic Surgery, Yeung-Nam University Hospital during the six year period from May 1983 to September 1989. 1. Metal failure occured in five dynamic-compression plates, one Jewett nail, one screw in Rowe plate, and one interlocking nail. 2. The clinical cause of metal failure was deficiency of medial butress in five cases, incorrect position of implant in one case, and incorrect selection of implant in two cases. 3. The time interval between internal fixation and metal failure was four months in one case, between five months to twelve months in six cases, three years in one case. 4. The fractographically analytical cause of metal failure was ; first, impact failure, one case, second, fatigue failure, six cases, machining mark(stress liser), four cases type : low consistent cyclic fatigue failure irregular cyclic fatigue failure third, stress corrosion crack, one case. 5. 316L Stainless Steel has good resistance to corrosion. However, when its peculiar surface film is destroyed by fretting, it shows pitting corrosion. This is, perhaps, the main cause of metal failure. 6. It is possible that mechanical injury occured in implants during the manufacturing of implants or that making a screw hole is the main cause of metal failure.

  • PDF

Characteristic Evaluation according to Heat Treatment Conditions of Super Duplex Stainless Steel with Additive 0.2% N - Part 2: Fatigue Crack Propagation Behavior (0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제2보: 피로균열진전 거동)

  • Ahn, Seok-Hwan;Kang, Heung-Joo;Seo, Hyun-Soo;Nam, Ki-Woo;Lee, Kun-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.79-84
    • /
    • 2009
  • Super duplex stainless steel has long life in severe environments by showing the enough strength and corrosion resistance. Therefore, the fracture mechanics approach needs to support the structural strength integrity for the used material. In this study, fatigue crack propagation behavior was investigated to super duplex stainless steel with 0.2% nitrogen. The various volume fraction and distribution of austenite structure for applied specimen in test were obtained by changing the heat treatment temperature and cycle. From test results, fatigue crack propagation rate showed two kinds of tendency between da/dN and ${\Delta}K$ according to distribution of austenite structure and structure anisotropy.

A Study on the correction of production related problems in stainless steel rolling stocks (스테인레스강 차체의 제작 관련 문제 및 대책에 관한 연구)

  • Seo, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.826-831
    • /
    • 2004
  • In this study. problems caused during production process of stainless steel carbody are investigated and solutions are found out. Roll forming process to make complex shape is introduced and surface crack on high strength stainless steel plate is investigated. Also, surface indentation is discussed and the effect of welding condition is clarified. Insulated tip to reduce the indentation is recommended for improvement of surface smoothness. Lastly. corrosion of welded joint is discussed and the effects of material, stress and environment are investigated.

  • PDF