• 제목/요약/키워드: stress corrosion

검색결과 913건 처리시간 0.021초

Consideration of Methods Evaluating the Growing Process of Stress Corrosion Cracking of the Sensitized 18-8 Austenitic Stainless Steel in High Temperature Water Based on Electric Circuit Theory: The Effects of Stress Factors

  • Tsukaue, Yasoji
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.103-111
    • /
    • 2007
  • The effect of stress factors on the growing process of stress corrosion cracking (SCC) of the sensitized 18-8 stainless steel in high temperature water was investigated using equations of crack growth rate derived from applying electric circuits to SCC corrosion paths. Three kinds of cross sections have to be considered when electric circuit is constructed using total current. The first is ion flow passage area, $S_{sol}$, of solution in crack, the second is total dissolving surface area, $S_{dis}$, of metal on electrode of crack tip and the third is dissolving cross section, $S_{met}$, of metal on grain boundary or in base metal or in welding metal. Stress may affect each area. $S_{sol}$ may depend on applied stress, $\sigma_{\infty}$, related with crack depth. $S_{dis}$ is expressed using a factor of $\varepsilon(K)$ and may depend on stress intensity factor, K only. SCC crack growth rate is ordinarily estimated using a variable of K only as stress factor. However it may be expected that SCC crack growth rate depends on both applied stress $\sigma_{\infty}$ and K or both crack depth and K from this consideration.$\varepsilon(K)$ is expressed as ${\varepsilon}(K)=h_2{\cdot}K^2+h_3{\cdot}K^3$ when $h_{2}$ and $h_{3}$ are coefficients. Also, relationships between SCC crack growth rate, da/dt and K were simulated and compared with the literature data of JBWR-VIP-04, NRC NUREG-0313 Rev.2 and SKIFS Draft. It was pointed out in CT test that the difference of distance between a point of application of force and the end of starter notch (starting point of fatigue crack) may be important to estimate SCC crack growth rate. An anode dissolution current density was quantitatively evaluated using a derived equation.

Investigation on the Corrosion Behaviour of Weld Structure

  • Kim, Hwan Tae;Kil, Sang Cheol;Hwang, Woon Suk;Cho, Won-Seung
    • Corrosion Science and Technology
    • /
    • 제6권1호
    • /
    • pp.33-35
    • /
    • 2007
  • Welding technology plays an important role in the fabrication of structure, and this has led to an increasing attention in the use of high quality advanced welding technology such as power beam welding, friction stir welding, and laser-arc hybrid welding, etc. At the same time, welding can influence various factors in the performance of plant and equipment, and corrosion behaviour of weldment has been one of the major issues for both welding and corrosion research engineers. The aim of this paper is to give a short survey of the recent technical trends of welding and corrosion behaviours including the electrochemical corrosion, stress corrosion cracking, and corrosion fatigue in connection with the welding materials, welding process, and welding fabrication.

Characteristics of Sulfide Stress Corrosion Cracking of High Strength Pipeline Steel Weld

  • Chang, Woong-Seong;Yoon, Byoung-Hyun;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • 제3권2호
    • /
    • pp.81-86
    • /
    • 2004
  • The sulfide stress corrosion cracking (SSCC) resistance of API X70 grade steel weldment has been studied using SSCC test in NACE TM-O177 method A. Also, microstructures and hardness distribution of weldment was investigated. The microstructure of SAW joint composed ferrite, pearlite and some MA constituent. Instead of hardening in CGHAZ, softening on the HAZ near base metal occurred. The low carbon TMCP type steel used for SAW showed softening behaviour in the HAZ adjacent to base metal, which was known to be closely related with the SOHIC (stress oriented hydrogen induced cracking). The SSC testing revealed that the API X70 SAW weld was suitable for sour service, satisfying the NACE requirements. By suppressing softening in the ICHAZ region, the SSCC resistance of low carbon TMCP steel welded joints could be more improved.

인코넬 합금의 열처리에 따른 입계 탄화물 석출 및 입계응력부식 거동 (The Effects of Heat Treatment on Intergranular Carbide Precipitations and Intergranular Stress Corrosion Cracking of Inconel alloy)

  • 맹완영;남태운
    • 열처리공학회지
    • /
    • 제10권4호
    • /
    • pp.219-231
    • /
    • 1997
  • Inconel alloys used as nuclear power plant components have experienced intergranular stress corrosion cracking problems inspite of their good corrosion characteristics. In order to investigate the effects of heat treatments on carbide precipitation and intergranular stress corrosion cracking(IGSCC) in Inconel alloys, DSC(Differential Scanning Calorimeter), TEM, EDXS and static potential corrosion tests were carried out. Thermal treatment at $750^{\circ}C$ for 15hours in Inconel alloys increased the density of intergranular carbide. The carbides are mainly $Cr_7C_3$ in Inconel 600, and $Cr_{23}C_6$ in Inconel 690. The Cr depletion around grain boundary is not crucial factor on IGSCC. The carbides in grain boundary play an important role as acting dislocation source, and as decreasing stress around growing crack.

  • PDF

사용환경에 따른 조가선의 피로수명 예측 (Prediction on Fatigue Life of Messenger Wire with Service Environments)

  • 장세기;김용기
    • 한국철도학회논문집
    • /
    • 제8권6호
    • /
    • pp.525-532
    • /
    • 2005
  • Fatigue life of catenary wires in various environments is reduced when stress is concentrated on some points, which are often found in corroded areas by surrounding pollutants. Therefore, the fatigue test were performed in order to investigate the effect of the surface corrosion on the destructive behavior in service environment and accelerated corrosion environment as well as th examine the corrosive property and mechanism of the catenary wires. In the fatigue test of the messenger stranded wire, the corrosion degraded materials showed 35~50% of fatigue life at a same stress amplitude compared to original material. Because the catenary wires have variable load by the interaction of periodic contacts with pantographs the maximum stresses of trolley wire and messenger wire calculated by simulation at the messenger wire during operation was estimated thought the corrosion behavior interpretation of variable stress and fatigue test.

Al-황동의 분극특성에 미치는 응력의 영향 (Effect of Stress on the Polarization Characteristic of Al-brass)

  • 임우조;정해규;심경태
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.1-5
    • /
    • 2004
  • Al-brass is the raw material of mnufacturing tubes for heat exchanger of vessel where seawater is used to coolant because it has high level of heat coductivity and excellent mechanical properties and high level of corrosion resistance due to cuprous oxide($Cu_2O$) layer against seawater. However, damage of Al-brass tubes for heat exchanger of vessel is reported that local corrosion such as stress corrosion cracking occurred by synergism effect between mechanical factor and corrosion environment. In this study, to investigate on the effect of stress on the polarization characteristics of Al-brass. At the stress of 0% and 95% yield strength by constant displacement tester, in 3.5% NaCl + 0.1% $NH_4OH$ solution, the polarization tests were carried out. And thus open circuit potential, corrosion current density, anodic polarization, cyclic polarization and dezincification behavior of Al-brass are investigated.

Stress Corrosion Cracking of Alloy 600 and Alloy 690 in Caustic Solution

  • Kim, Hong Pyo;Lim, Yun Soo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • 제2권2호
    • /
    • pp.82-87
    • /
    • 2003
  • Stress corrosion cracking of Alloy 600 and Alloy 690 has been studied with a C-ring specimen in 1%, 10% and 40% NaOH at $315^{\circ}C$. SCC test was performed at 200 mV above corrosion potential. Initial stress on the apex of C-ring specimen was varied from 300 MPa to 565 MPa. Materials were heat treated at various temperatures. SCC resistance of Ni-$_\chi$Cr-10Fe alloy increased as the Cr content of the alloy increased if the density of an intergranular carbide were comparable. SCC resistance of Alloy 600 increased in caustic solution as the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary increased. Low temperature mill annealed Alloy 600 with small grain size and without intergranular carbide was most susceptible to SCC. TT Alloy 690 was most resistant to SCC due to the high value of the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary. Dependency of SCC rate on stress and NaOH concentration was obtained.

Intergranular Corrosion Mechanism of Slightly-sensitized and UNSM-treated 316L Stainless Steel

  • Lee, J.H.;Kim, K.T.;Pyoun, Y.S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제15권5호
    • /
    • pp.226-236
    • /
    • 2016
  • 316L stainless steels have been widely used in many engineering fields, because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion and stress corrosion cracking etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled by methods such as the lowering of carbon content, solution heat treatment. This work focused on the intergranular corrosion mechanism of slightly-sensitized and Ultrasonic Nano-crystal Surface Modification (UNSM)-treated 316L stainless steel. Samples were sensitized for 1, 5, and 48 hours at $650^{\circ}C$ in $N_2$ gas atmosphere. Subsequently UNSM treatments were carried out on the surface of the samples. The results were discussed on the basis of the sensitization by chromium carbide and carbon segregation, the residual stress and grain refinement. Even though chromium carbide was not precipitated, the intergranular corrosion rate of 316L stainless steel was drastically increased with aging time, and it was confirmed that the increased intergranular corrosion rate of slightly-sensitized (not carbide formed) 316L stainless steel was due to the carbon segregation along the grain boundaries. However, UNSM treatment improved the intergranular corrosion resistance of aged stainless steels, and its improvement was due to the reduction of carbon segregation and the grain refinement of the outer surface, including the introduction of compressive residual stress.

複合組織鋼의 第2相 硬度變化가 腐蝕疲勞 크랙傳播에 미치는 影響 (The Influence on the Corrosion Fatigue Crack Propagation in Changing of the Second Phase Hardness of Dual Phase Steel)

  • 오세욱;김웅집
    • Journal of Welding and Joining
    • /
    • 제11권2호
    • /
    • pp.42-52
    • /
    • 1993
  • The corrosion fatigue fracture behaviour of dual phase steel was investigated in 3% NaCl solution at 302MPa and 137MPa. Fatigue test was conducted by cantilever type of self-made rotary bending fatigue testing machine. The fatigue strength increased with increasing the hardness of 2nd phase. Corrosion pit originated at the boundary of the 2nd phase. The size and number of corrosion pits were influenced by the 2nd phase hardness, and pits remained constant in size just after they were transited into cracks. The life of crack initiation was effected by stress level. The shape of relation of .DELTA. K and da/dN has smaller scattering in it in 3% NaCl solution than that in air. The higher the 2nd phase hardness is, the greater the corrosion fatigue life becomes. Corrosion fatigue fracture behaviour was primarily effected by mechanical factor in case of high stress(302MPa), but by electro-chemical reaction in a lower stress(137MPa). As stress level got lower and hardness of the 2nd phase got higher, the roughness of fracture surface increased.

  • PDF

Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application

  • Yang Ding;Xiao-Wei Ye;Hong Zhang;Xue-Song Zhang
    • Steel and Composite Structures
    • /
    • 제50권3호
    • /
    • pp.363-374
    • /
    • 2024
  • The fatigue life of steel wire is affected not only by fatigue load, but also by corrosion environment in service period. Specially, the corrosion pit will lead to stress concentration on the surface of steel wire inducing the formation of fatigue cracks, and the fatigue cracks will accelerate the corrosion process. Therefore, the corrosion fatigue of steel wire is a coupling effect. In this study, the corrosion-fatigue coupling life curve is derived with considering corrosion-fatigue pitting stage, corrosion-fatigue short crack stage and corrosion-fatigue long crack stage. In addition, the stress concentration factors of different corrosion pits are calculated by COMSOL software. Furthermore, the effect of corrosion environment factors, that is, corrosion rate, corrosion pit morphology, frequency and action factor of fatigue load, on fatigue life of steel wire is analyzed. And then, the corrosion-fatigue coupling life curve is compared with the fatigue life curve and fatigue life curve with pre-corrosion. The result showed that the anti-fatigue performance of the steel wire with considering corrosion-fatigue coupling is 68.08% and 41.79% lower than fatigue life curve and fatigue life curve with pre-corrosion. Therefore, the corrosion-fatigue coupling effect should be considered in the design of steel wire.