• 제목/요약/키워드: stress corrosion

검색결과 903건 처리시간 0.023초

Effect of Dissolved Oxygen on the Stress Cor rosion Cracking Behavior of 3.5NiCrMoV Steels in High Temperature Water

  • Lee, J.H.;Maeng, W.Y.;Kim, U.C.
    • Corrosion Science and Technology
    • /
    • 제2권4호
    • /
    • pp.178-182
    • /
    • 2003
  • Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of environmental factors on the Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs for Low-Pressure (LP) steam turbines in electric power generating plants. The influences of dissolved oxygen on the stress corrosion cracking of turbine steel were studied, For this purpose, specimens were strained at variously oxygenated conditions at $150^{\circ}C$ in pure water. When the specimen was strained with $1{\times}10^{-7}s^{-1}$ at $150^{\circ}C$ in pure water, increasing concentration of dissolved oxygen decreased the elongation and the UTS. The corrosion potential and the corrosion rare increased as the amounts of dissolved oxygen increased. The increase of the SCC susceptibility of the turbine steel in a highly dissolved oxygen environment is due to the non protectiveness of the oxide layer on the turbine steel surface and the increase of the corrosion current. These results clearly indicate that oxygen concentration increases Stress Corrosion Cracking susceptibility in turbine steel at $150^{\circ}C$.

Application of the Electrochemical Noise Method with Three Electrodes to Monitor Corrosion and Environmental Cracking in Chemical Plants

  • Ohtsu, Takao;Miyazawa, Masazumi;Ebara, Ryuicluro
    • Corrosion Science and Technology
    • /
    • 제7권3호
    • /
    • pp.173-178
    • /
    • 2008
  • Recently an electrochemical noise method (ENM) with three electrodes has gained attention as a corrosion monitoring system in chemical plants. So far a few studies have been carried out for localized corrosion and environmental cracking of chemical plant materials. In this paper the ENM system is briefly summarized. Then an application of ENM to general corrosion for chemical plant materials is described. The emphasis is focused upon the analysis of stress on the corrosion cracking process of austenitic stainless steel in 30% $MgCl_2$ aqueous solution and the corrosion fatigue crack initiation process of 12 Cr stainless steel in 3% NaCl aqueous solution by ENM. Finally future problems for ENM to monitor regarding corrosion and environmental cracking in chemical plants are discussed.

304 스테인레스鋼 熔接部의 응력부식구열에 관한 硏究 (A study on stress corrosion cracking of weld zone in 304-stainless steel)

  • 김경일;강인찬
    • Journal of Welding and Joining
    • /
    • 제5권2호
    • /
    • pp.35-43
    • /
    • 1987
  • The effect of post weld heat treatment (P.W.H.T) on the propagation rate of stress corrosion cracking(S.C.C) and threshold stress intensity factor ($K_{IC}.c.c$) for stress corrosion cracking of 304 stainless steel has been investigated in boiling 45% $MgCl_2$ solutions with W.O.L specimens. Specimens were precracked by turning a pair of Cr-Mo steel bolts into a machined slot at the end of the specimen. The fracture surface was examined fractographically by Scanning Electron Microscope(S.E.M.)

  • PDF

스프링 체결나사의 응력부식균열 수명예측 (Stress Corrosion Cracking Lifetime Prediction of Spring Screw)

  • 고승기;류창훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.7-12
    • /
    • 2004
  • A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF

인장응력과 H2S 부식의 복합조건 하에서 고강도 강재의 수소확산 거동 분석을 위한 Numerical 확산모델과 이론적 고찰 (Theoretical Considerations of Numerical Model for Hydrogen Diffusion Behavior of High-Strength Steel Under Combined Action of Tensile Stress and H2S Corrosion)

  • 김성진
    • Corrosion Science and Technology
    • /
    • 제18권3호
    • /
    • pp.102-109
    • /
    • 2019
  • The hydrogen diffusion and trapping model with a numerical finite difference method (FDM) was modified and extended to accommodate $H_2S$ corrosion and scale forming processes of high-strength steel under tensile stress condition. The newly proposed diffusion model makes it possible to clearly understand combined effect of tensile stress and $H_2S$ corrosion process on hydrogen diffusion behaviors. The core concept of this theoretical approach is that overall diffusion behavior is separated into diffusion process through two respective layers: an outer sulfide scale and an inner steel matrix. Diffusion coefficient values determined by curve-fitting permeation data reported previously with the newly proposed diffusion model indicate that the application of tensile stress can contribute to continual increase in the diffusivity in the sulfide scale with a high density of defect. This suggests that the scale with a lower stability under the stress condition can be a key parameter to enhance hydrogen influx in the steel matrix. Consequently, resistance to hydrogen assisted cracking of the steel under tensile stress can be decreased significantly.

플라즈마 스프레이방법을 이용하여 Ti 언더코트를 제작한 SUS316L강의 부식피로 특성 (Corrosion Fatigue Characteristics of SUS316L Steel with Ti Undercoat using Plasma Spray Method)

  • 한창석;김우석
    • 한국재료학회지
    • /
    • 제31권3호
    • /
    • pp.172-180
    • /
    • 2021
  • In this study, using the plasma spray method, tensile and compression fatigue tests are performed in saline solution to examine the effect of Ti undercoat on corrosion fatigue behavior of alumina-coated specimens. The alumina-coated material using Ti in the undercoat shows better corrosion fatigue strength than the base material in the entire stress amplitude range. Fatigue cracking of UT specimens occurs in the recess formed by grit-blasting treatment and progresses toward the base metal. Subsequently, the undercoat is destroyed at a stage where the deformation of the undercoat cannot follow the crack opening displacement. The residual stress of the UT specimen has a tensile residual stress up to about 100 ㎛ below the surface of the base material; however, when the depth exceeds 100 ㎛, the residual stress becomes a compressive residual stress. In addition, the inside of the spray coating film is compressive residual stress, which contributes to improving the fatigue strength characteristics. A hardened layer due to grit-blasting treatment is formed near the surface of the UT specimen, contributing to the improvement of the fatigue strength characteristics. Since the natural potential of Ti spray coating film is slightly higher than that of the base material, it exhibits excellent corrosion resistance; however, when physiological saline intrudes, a galvanic battery is formed and the base material corrodes preferentially.

Effect of Annealing on the Pitting Corrosion Resistance of Anodized Aluminum-Magnesium Alloy Processed by Equal Channel Angular Pressing

  • Son, In-Joon;Nakano, Hiroaki;Oue, Satoshi;Kobayashi, Shigeo;Fukushima, Hisaaki;Horita, Zenji
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.275-281
    • /
    • 2007
  • The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of $AlCl_3$ and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at $100-400A/m^2$ at 293 K in a solution containing 1.53 mol/L of $H_2SO_4$ and 0.0185 mol/L of $Al_2(SO_4)_3$. The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. However, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy; the stresses remain in the anodic oxide films, increasingthe likelihood of cracks. It is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be attributable to a decrease in the internal stresses in anodic oxide films

Consideration of Methods Evaluating the Growing Process of Stress Corrosion Cracking of the Sensitized 18-8 Austenitic Stainless Steel in High Temperature Water Based on Electric Circuit Theory: The Effects of Stress Factors

  • Tsukaue, Yasoji
    • Corrosion Science and Technology
    • /
    • 제6권3호
    • /
    • pp.103-111
    • /
    • 2007
  • The effect of stress factors on the growing process of stress corrosion cracking (SCC) of the sensitized 18-8 stainless steel in high temperature water was investigated using equations of crack growth rate derived from applying electric circuits to SCC corrosion paths. Three kinds of cross sections have to be considered when electric circuit is constructed using total current. The first is ion flow passage area, $S_{sol}$, of solution in crack, the second is total dissolving surface area, $S_{dis}$, of metal on electrode of crack tip and the third is dissolving cross section, $S_{met}$, of metal on grain boundary or in base metal or in welding metal. Stress may affect each area. $S_{sol}$ may depend on applied stress, $\sigma_{\infty}$, related with crack depth. $S_{dis}$ is expressed using a factor of $\varepsilon(K)$ and may depend on stress intensity factor, K only. SCC crack growth rate is ordinarily estimated using a variable of K only as stress factor. However it may be expected that SCC crack growth rate depends on both applied stress $\sigma_{\infty}$ and K or both crack depth and K from this consideration.$\varepsilon(K)$ is expressed as ${\varepsilon}(K)=h_2{\cdot}K^2+h_3{\cdot}K^3$ when $h_{2}$ and $h_{3}$ are coefficients. Also, relationships between SCC crack growth rate, da/dt and K were simulated and compared with the literature data of JBWR-VIP-04, NRC NUREG-0313 Rev.2 and SKIFS Draft. It was pointed out in CT test that the difference of distance between a point of application of force and the end of starter notch (starting point of fatigue crack) may be important to estimate SCC crack growth rate. An anode dissolution current density was quantitatively evaluated using a derived equation.

Investigation on the Corrosion Behaviour of Weld Structure

  • Kim, Hwan Tae;Kil, Sang Cheol;Hwang, Woon Suk;Cho, Won-Seung
    • Corrosion Science and Technology
    • /
    • 제6권1호
    • /
    • pp.33-35
    • /
    • 2007
  • Welding technology plays an important role in the fabrication of structure, and this has led to an increasing attention in the use of high quality advanced welding technology such as power beam welding, friction stir welding, and laser-arc hybrid welding, etc. At the same time, welding can influence various factors in the performance of plant and equipment, and corrosion behaviour of weldment has been one of the major issues for both welding and corrosion research engineers. The aim of this paper is to give a short survey of the recent technical trends of welding and corrosion behaviours including the electrochemical corrosion, stress corrosion cracking, and corrosion fatigue in connection with the welding materials, welding process, and welding fabrication.

Characteristics of Sulfide Stress Corrosion Cracking of High Strength Pipeline Steel Weld

  • Chang, Woong-Seong;Yoon, Byoung-Hyun;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • 제3권2호
    • /
    • pp.81-86
    • /
    • 2004
  • The sulfide stress corrosion cracking (SSCC) resistance of API X70 grade steel weldment has been studied using SSCC test in NACE TM-O177 method A. Also, microstructures and hardness distribution of weldment was investigated. The microstructure of SAW joint composed ferrite, pearlite and some MA constituent. Instead of hardening in CGHAZ, softening on the HAZ near base metal occurred. The low carbon TMCP type steel used for SAW showed softening behaviour in the HAZ adjacent to base metal, which was known to be closely related with the SOHIC (stress oriented hydrogen induced cracking). The SSC testing revealed that the API X70 SAW weld was suitable for sour service, satisfying the NACE requirements. By suppressing softening in the ICHAZ region, the SSCC resistance of low carbon TMCP steel welded joints could be more improved.