Browse > Article
http://dx.doi.org/10.14773/cst.2019.18.3.102

Theoretical Considerations of Numerical Model for Hydrogen Diffusion Behavior of High-Strength Steel Under Combined Action of Tensile Stress and H2S Corrosion  

Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
Publication Information
Corrosion Science and Technology / v.18, no.3, 2019 , pp. 102-109 More about this Journal
Abstract
The hydrogen diffusion and trapping model with a numerical finite difference method (FDM) was modified and extended to accommodate $H_2S$ corrosion and scale forming processes of high-strength steel under tensile stress condition. The newly proposed diffusion model makes it possible to clearly understand combined effect of tensile stress and $H_2S$ corrosion process on hydrogen diffusion behaviors. The core concept of this theoretical approach is that overall diffusion behavior is separated into diffusion process through two respective layers: an outer sulfide scale and an inner steel matrix. Diffusion coefficient values determined by curve-fitting permeation data reported previously with the newly proposed diffusion model indicate that the application of tensile stress can contribute to continual increase in the diffusivity in the sulfide scale with a high density of defect. This suggests that the scale with a lower stability under the stress condition can be a key parameter to enhance hydrogen influx in the steel matrix. Consequently, resistance to hydrogen assisted cracking of the steel under tensile stress can be decreased significantly.
Keywords
Steel; Hydrogen diffusion; Hydrogen sulfide; Tensile stress; Finite difference method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. W. Vollmer, Corrosion, 8, 461 (1952).   DOI
2 G. T. Park, W. W. Lee, K. Y. Kim, and B. Y. Yang, Corros. and Protect., 5, 13 (2006).
3 H.-Y. Liou, R.-I. Shieh, F.-I. Wei, and S.-C. Wang, Corrosion, 49, 389 (1993).   DOI
4 G. T. Park, S. U. Koh, H. G. Jung, and K. Y. Kim, Corros. Sci., 50, 1865 (2008).   DOI
5 A. R. Troiano, Trans. ASM, 52, 54 (1960).
6 K. S. Yun, J. Corros. Sci. Soc. of Kor., 12, 19 (1983).
7 G. N. Haidemenopoulos, H. Kamoutsi, K. Polychronopoulou, P. Papageorgiou, I. Altanis, P. Dimitriadis, and M. Stiakakis, Metals, 8, 663 (2018).   DOI
8 C. M. Liao and J. L. Lee, Corrosion, 50, 695 (1994).   DOI
9 M. C. Zhao, B. Tang, Y. Y. Shan, and K. Yang, Metall. Mater. Trans. A, 34, 1089 (2003).   DOI
10 NACE TM0177, Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in $H_2S$ Environments, NACE, Houston (2016).
11 B. J. Berkowitz and F. H. Heubaum, Corrosion, 40, 240 (1983).   DOI
12 S. J. Kim, H. G. Jung, and K. Y. Kim, Electrochim. Acta, 78, 139 (2012).   DOI
13 M. Kurkela and R. M. Latanision, Scr. Mater., 13, 927. (1979).
14 Y. Huang, A. Nakajima, A. Nishikata, and T. Tsuru, ISIJ Int., 43, 548 (2003).   DOI
15 S. U. Koh, J. M. Lee, B. Y. Yang, and K. Y. Kim, Corrosion, 63, 220 (2007).   DOI
16 M. Kurkela, G. S. Frankel, and R. M. Latanision, Scr. Mater., 16, 455 (1982).
17 T. Zakroczymski, Corrosion, 41, 485 (1985).   DOI
18 A. M. Brass and J. Chene, Corros. Sci., 48, 481 (2006).   DOI
19 S. J. Kim and K. Y. Kim, Scr. Mater., 66, 1069 (2012).   DOI
20 ISO 17081:2004 (E), Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique, ISO, Switzerland (2004).
21 J. B. Leblond and D. Dubois, Acta Metall., 31, 1459 (1983).   DOI
22 S. J. Kim, D. W. Yun, H. G. Jung, and K. Y. Kim, J. Electrochem. Soc., 161, E173 (2014).   DOI
23 A. McNabb and P. K. Foster, T. Metall. Soc. AIME, 227, 618 (1963).
24 R. A. Oriani, Acta Metall., 18, 147 (1970).   DOI
25 A. Turnbull, M. W. Carroll, and D. H. Ferriss, Acta Metall., 37, 2039 (1989).   DOI
26 P. Castano-Rivera, V. P. Ramunni, and P. Bruzzoni, Corros. Sci., 54, 106 (2012).   DOI
27 S. J. Kim, Int. J. Hydrogen Energ., 42, 19367 (2017).   DOI
28 F. Huang, P. Cheng, X. Y. Zhao, J. Liu, Q. Hu, and Y. F. Cheng, Int. J. Hydrogen Energ., 42, 4561 (2017)   DOI
29 E. Wallaert, T. Depover, I. D. Graeve, and K. Verbeken, Metals, 8, 62 (2018).   DOI
30 Y. Huang, A. Nakajima, A. Nishikata, and T. Tsuru, ISIJ Int., 43, 548 (2003).   DOI
31 T. Zakroczymski, Corrosion, 41, 485 (1985).   DOI
32 Y. Zheng, J. Ning, B. Brown, D. Young, and S. Nesic, Proc. Corrosion Conf., No. 5933, NACE International, Houston, TX (2015).
33 H. E. Townsend, Corrosion, 26, 361 (1970).   DOI