• 제목/요약/키워드: stress component

검색결과 959건 처리시간 0.036초

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2007년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

Laser-induced Damage to Polysilicon Microbridge Component

  • Zhou, Bing;He, Xuan;Li, Bingxuan;Liu, Hexiong;Peng, Kaifei
    • Current Optics and Photonics
    • /
    • 제3권6호
    • /
    • pp.502-509
    • /
    • 2019
  • Based on the typical pixel structure and parameters of a polysilicon uncooled bolometer, the absorption rate of a polysilicon microbridge infrared detector for 10.6 ㎛ laser energy was calculated through the optical admittance method, and the thermal coupling model of a polysilicon microbridge component irradiated by far infrared laser was established based on theoretical formulas. Then a numerical simulation study was carried out by means of finite element analysis for the actual working environment. It was found that the maximum temperature and maximum stress of the microbridge component are approximately exponentially changing with the laser power of the irradiation respectively and that they increase monotonically. The highest temperature zone of the model is gradually spread by the two corners of the bridge surface that are not connected to the bridge legs, and the maximum stress acts on both sides of the junction of the microbridge legs and the substrate. The mechanism of laser-induced hard damage to polysilicon detectors is the melting damage caused by high temperature. This paper lays the foundation for the subsequent study of the interference mechanism of the laser on working state polysilicon detectors.

FEM 시뮬레이션을 이용한 유니버설 조인트의 구조안전성 (Structural Safety of Universal Joint using FEM Simulation)

  • 정종윤
    • 산업경영시스템학회지
    • /
    • 제41권4호
    • /
    • pp.213-219
    • /
    • 2018
  • Mechanical components are to be produced with accurate dimensions in order to function properly in assemblies of a machine. Once designs of mechanical components are created, designers examine the designs by adopting many known experimental methods. A primary test method includes stress and strain evaluation of structural parts. In addition, fatigue test and vibration analysis are an important test method for mechanical components. Real experiments at a laboratory are established when products are manufactured. Since design changes should be done before producing the designs in factories, rapid modifications for new designs are required in production industries. FEM simulation is a proper choice for a design evaluation with speed at a detail stage in design process. This research focuses modeling and mechanical simulation of a mechanical component in order to ensure structural safety. In this paper, a universal joint, being used in driving axels of vehicles, is studied as a target component. A design model is created and tested in some ways by using commercial software of FEM. The designed component is being twisted to transmit heavy power and thus, torsional stress should be under strengths of the component's material. The next is fatigue analysis to convince fatigue cycles to be within the endurance limit of the material. Another test is a vibration analysis for rotational components. This research draws final conclusions from these test analyses and recommends whether the designed model is under safety condition in terms of mechanical structure.

일개 대학 경비근로자의 수면의 질과 직무스트레스가 건강관련 삶의 질에 미치는 영향 (Effects of sleep quality and occupational stress on health-related quality of life among a university's security workers)

  • 박건우;고수진;김동하;김혜림;박진관;유수영;정두영;천진희;황순영;조성일
    • 보건교육건강증진학회지
    • /
    • 제32권3호
    • /
    • pp.73-83
    • /
    • 2015
  • Objectives: The purpose of this study was to identify the effects of sleep quality and occupational stress on health-related quality of life among a university's security workers. Methods: 128 security workers voluntarily participated in the study. The survey asked demographic, health related, job related factors, the Korean Occupational Stress Scale Short Form(KOSS-SF), sleep quality questionnaire, and 12-Short Form Health Survey version 2.0(SF-12v2). The data were analyzed by using descriptive analysis, t-test, ANOVA, multiple linear regression, and multiple logistic regression. Results: The interrupted rest time was significantly negatively related to occupational stress. The occupational stress significantly affected sleep quality. The significant variable affecting Physical Component Score(PCS) and Mental Component Score(MCS) was sleep quality and occupational stress, respectively. Conclusions: HRQOL was founded to be affected by occupational stress and sleep disorder among the security workers. Based on this study, we suggest that the management of both occupational stress and sleep quality is crucial to improve the HRQOL.

Optical Passive Component의 열응력 변화에 따른 문제 연구 (Research of the Thermal Stress effect for Optical Passive Component)

  • 박제영;차두열;여동훈;김종희;장성필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.118-119
    • /
    • 2006
  • 현재의 소자간 연결을 위해 사용되는 금속배선의 한계로 인해 보다 고속/대용량의 광연결(Optical Interconnection)이 크게 각광받고 있다. 본 논문에서는 FEM 시뮬레이션(Finite Element Method Simulation)을 통해 온도변화에 따른 기판에서의 온도분포를 살펴보고, 열응력 분포와 열응력 집중에 의한 기판의 변형으로 인한 문제를 연구하였다. 이를 통해 향후 Optical Passive Component 설계시 Optical Passive Component 변형의 원인이 될 수 있는 열원들의 배치를 최적화 시키고 기판의 취약부운을 보강하여 우수한 성능의 Optical Passive Component 제작을 목표로 하고 있다.

  • PDF

컴포넌트기반 방법론을 사용한 프레임워크 개발에 관한 연구 (A Study on the Development of Framework Using Component Based Methodology)

  • 김행곤;한은주
    • 한국정보처리학회논문지
    • /
    • 제7권3호
    • /
    • pp.842-851
    • /
    • 2000
  • Developers can reuse not only class code but also wide range of knowledge on domain by reusing framework. Existing Object-Oriented Methodology and Catalysis Methodology were presented when redefining component in the course of redesigning framework. However, existing methodologies have weakness that entire process is waterfall mode or design of interface lays too much stress on implementation stage. So, this thesis will present Component-Oriented Methodology for the reuse of framework, and construct the environment for framework and domain development. That is, domain is analyzed by input of domain knowledge on real world to create software based on component, and hotspot is identified through analyzed information, and refactoring by putting additional information on users and developers. After that, I will create domain framework and application framework depending on domain. In this Component-Oriented Methodology, information is searched, understood and extracted or composite through component library storage internally. Then this information is classified into the information on component, and used as additional information in redesigning. With this, developer can obtain reusability, easiness and portability by constructing infrastructure environment that allows to register, update and delete component through Component Management System(CMS) under he development environment which can be easily applied to his own application using framework component, in this thesis, CoRBA(Common Object Request Broker Architecture) environment.

  • PDF

반복하중을 받는 해양 실트질 모래의 응력기반 파괴기준 (Stress-Dependent Failure Criteria for Marine Silty Sand Subject to Cyclic Loading)

  • 류태경;김진만
    • 한국지반공학회논문집
    • /
    • 제31권11호
    • /
    • pp.15-23
    • /
    • 2015
  • 반복단순전단시험기를 사용하여 조밀한 해양실트질 모래의 비배수 파괴거동에 대한 평균전단응력과 반복전단응력의 영향을 평가하였다. 시험결과는 평균전단응력비가 0인 경우는 비교적 좌우 대칭형태의 반복전단변형률이 주된 변형모드였으며 영구전단변형률은 상대적으로 작게 발생하였다. 평균전단응력비가 0이상인 경우는 반복횟수가 증가함에 따라 주로 한 방향으로 영구전단변형률이 증가하고 반복전단변형률은 거의 변화가 없었다. 평균전단응력비는 응력-변형률 거동에 상당한 영향을 보였으나, 파괴에 필요한 반복하중횟수 등에 대한 영향이 반복전단응력비에 비해 상대적으로 적었다. 본 논문에서 제안한 응력기반 파괴기준은 해양구조물 설계 시 기초 하부 지반의 반복전단강도를 평가하는 데 효과적으로 사용될 수 있다.

적합도가 다른 임플랜트 지지 보철물의 삼차원적 응력 분석 (Three dimensional stress analysis of implant-supported prosthesis with various misfit)

  • 양홍서;정현주;박영준;박상원
    • 구강회복응용과학지
    • /
    • 제17권4호
    • /
    • pp.307-314
    • /
    • 2001
  • To evaluate the effect of misfit in two implant-supported fixed partial dentures in the posterior of the mandible, variations of the standard finite element models were made by changing the location of the gap as follows: 1) no gap present; 2) located between the gold cylinder and the abutment on the distal implant; 3) gap located between the gold cylinder and the abutment on the mesial implant. The results of this study were as follows: 1. When the location of the gap was close to the load applied on the prosthesis, the stress in the prosthesis, implant components and surrounding bone increased. 2. The presence of cantilever increased the stress in the prosthesis, implant and surrounding bone significantly, regardless of the presence of the gap. 3. When there was a gap between the prosthesis and abutment, the stress in the bone around the implant increased. 4. When passive fit was achieved, the stress was distributed widely in each component with less peak stress in each component. 5. The inner structures of the implant components, the gold screw and the abutment screw bear more stress when the prosthesis did not exhibit passive fit with the abutments than when passive fit was present.

  • PDF

다양한 길이의 two-component 미니 임플란트의 응력분산에 대한 3차원적 유한요소분석 (Three-dimensional finite element analysis for determining the stress distribution after loading the bone surface with two-component mini-implants of varying length)

  • 최봄;이동옥;모성서;김성훈;박기호;정규림;;한성호
    • 대한치과교정학회지
    • /
    • 제41권6호
    • /
    • pp.423-430
    • /
    • 2011
  • Objective: To evaluate the extent and aspect of stress to the cortical bone after application of a lateral force to a two-component orthodontic mini-implant (OMI, mini-implant) by using three-dimensional finite element analysis (FEA). Methods: The 3D-finite element models consisted of the maxilla, maxillary first molars, second premolars, and OMIs. The screw part of the OMI had a diameter of 1.8 mm and length of 8.5 mm and was placed between the roots of the upper second premolar and the first molar. The cortical bone thickness was set to 1 mm. The head part of the OMI was available in 3 sizes: 1 mm, 2 mm, and 3 mm. After a 2 N lateral force was applied to the center of the head part, the stress distribution and magnitude were analyzed using FEA. Results: When the head part of the OMI was friction fitted (tapped into place) into the inserted screw part, the stress was uniformly distributed over the surface where the head part was inserted. The extent of the minimum principal stress suggested that the length of the head part was proportionate with the amount of stress to the cortical bone; the stress varied between 10.84 and 15.33 MPa. Conclusions: These results suggest that the stress level at the cortical bone around the OMI does not have a detrimental influence on physiologic bone remodeling.

전 슬관절 치환 성형술에 사용되는 초고분자량 폴리에틸렌 삽입물의 접촉응력에 관한 유한요소해석 (Finite Element Analysis for the Contact Stress of Ultra-high Molecular Weight Polyethylene in Total Knee Arthroplasty)

  • 조철형;최재봉;최귀원;윤강섭;강승백
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권1호
    • /
    • pp.37-44
    • /
    • 1999
  • 인공 슬관절에 사용되는 초고분자량 폴리에틸렌(Ultra-high molecular weight polyethylene : UHMWPE)의 마모는 삽입물의 수명을 결정하는 주요 요인으로 작용한다. UHMWPE의 마모로 입자가 발생하여 조직반응을 일으키고 이에 따른 일련의 반응으로 골용해가 일어나 인공관절의 실패의 원인으로 작용한다. 여러 보고들에 의하면 관절 운동시 발생하는 접촉응력은 UHMWPE의 마모에 영향을 미치는 주요한 인자 중 하나로 알려져 있다. 그러나 이러한 보고들은 관절 접촉면에서의 접촉 조건만을 고려했고 UHMWPE 삽입물을 지지하고 있는 금속 지지판과의 접촉면에서의 접촉 조건은 고려하지 않았다. 본 연구에서는 이러한 접촉 조건들을 고려하여 UHMWPE의 모양, 두께, 마찰, 굴곡 정도 그리고 구성 요소들에 대한 UHMWPE 표면과 내부에서의 응력해석을 통해 이들 변수가 UHMWPE의 마모현상에 미치는 영향을 알아보았다. UHMWPE의 모양에 따른 관절의 일치정도(conformity)에 대한 영향의 경우, 일치정도가 높은 모델이 응력을 줄여줄 수 있는 유형으로 나타났으며, 금속 지지판과의 접촉면에서 접촉조건을 준 경우가 완전히 결합된 것으로 가정한 경우보다 UHMWPE 내부에서의 최대 응력이 1-2mm 더 아래에서 나타났다. 또한 UHMWPE로만 된 유형이 금속 지지판이 있는 유형보다 낮은 응력분포를 보여줌으로써 높은 응력으로 인한 UHMWPE의 마모와 균열을 줄이기 위해서는 UHMWPE로만 된 유형의 삽입물의 사용이 좋을 것으로 사료되었다.

  • PDF