• 제목/요약/키워드: stress anisotropy

검색결과 241건 처리시간 0.027초

비선형 k-$\varepsilon$ 난류모델에 의한 봉다발의 삼각형 부수로내 난류유동 수치해석 (Simulation of Turbulent Flow in a Triangular Subchannel of a Bare Rod Bundle with Nonlinear k-$\varepsilon$ Models)

  • 명현국
    • 한국전산유체공학회지
    • /
    • 제8권2호
    • /
    • pp.8-15
    • /
    • 2003
  • Three nonlinear κ-ε models with the wall function method are applied to the fully developed turbulent flow in a triangular subchannel of a bare rod bundle. Typical predicted quantities such as axial and secondary velocities, turbulent kinetic energy and wall shear stress are compared in details both qualitatively and quantitatively with both each other and experimental data. The nonlinear κ-ε models by Speziale[1] and Myong and Kasagi[2] are found to be capable of predicting accurately noncircular duct flows involving turbulence-driven secondary motion. The nonlinear κ-ε model by Shih et aL.[3] adopted in a commercial code is found to be unable to predict accurately noncircular flows with the prediction level of secondary flows one order less than that of the experiment.

PERFORMANCE ANALYSIS OF THE TURBULENCE MODELS FOR A TURBULENT FLOW IN A TRIANGULAR ROD BUNDLE

  • In W.K;Chun T.H;Myong H.K
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.63-66
    • /
    • 2005
  • A computational fluid dynamics(CFD) analysis has been made for fully developed turbulent flow in a triangular bare rod bundle with a pitch to diameter ratio (P/D) of 1.123. The nonlinear turbulence models predicted the turbulence-driven secondary flow in the triangular subchannel. The nonlinear quadratic κ-ε models by Speziale[1] and Myong-Kasagi[2] predicted turbulence structure in the rod bundle fairly well. The nonlinear quadratic and cubic k-ε models by Shih et al.[3] and Craft et al.[4] showed somewhat weaker anisotropic turbulence. The differential Reynolds stress model by Launder et al.[5} appeared to over predict the turbulence anisotropy in the rod bundle.

알루미늄판재 성형성 예측을 위한 평면이방성 해석기술개발 (Development of stamping analysis process for formability prediction of aluminum alloy sheets)

  • 김윤근;정완진;김성태;문명수;윤정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.304-307
    • /
    • 2006
  • A plane stress yield function YLD2000(Yoon et al., 2000) is applied to the finite element analysis S/W Z-Stamp because it is required to conduct proper consideration of aluminum alloy which has anomalous behavior. In the previous study, verification of the yield function and developed S/W is implemented. In this paper, two real parts of automobile body are additionally considered to verify the validity of Z-Stamp. The one is the benchmark problem #2 of Numisheet 2005 and the other is a small member part. In case of benchmark problem, formability simulation result and try-out result are compared with each other. In case of the small member part, formability analysis is implemented to predict the problem during the developing time.

  • PDF

AZ31B 마그네슘 합금 판재의 OSU 드로우벤드 시험과 스프링 백 측정 (Measurement of Springback of AZ31B Mg Alloy Sheet in OSU Draw/bend Test)

  • 최종길;최선철;이명규;김헌영
    • 소성∙가공
    • /
    • 제16권6호
    • /
    • pp.447-451
    • /
    • 2007
  • The springback characteristics of AZ31B magnesium alloy sheet was investigated in OSU draw/bend test Springback is the elastically-driven change of shape of a part after forming and it should be estimated and controlled to manufacture more precise products in sheet forming. Magnesium alloy sheets have unique mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening response. So, there will be a difference in the prediction of springback with symmetric mechanical properties for magnesium alloy sheets. In this work, the Strip draw/bend tests were conducted with various conditions - die radius, sheet thickness and controlled tensile force and the tendency of springback angle was observed from the tests.

CFD Simulation of Axial Turbulent Flow in a Triangular Rod Bundle

  • In W.K.;Chun T. H.;Myong H. K;Ko K
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.71-73
    • /
    • 2003
  • A CFD analysis has been made for fully developed turbulent flows in a triangular bare rod bundle with pitch to diameter ratio (P/D) of 1.123. The nonlinear turbulence models predicted the turbulence­driven secondary flow in the triangular subchannel. The nonlinear quadratic $\kappa-\omega$ models by Speziale and Myong-Kasagi predicted turbulence structure in the rod bundle fairly well. The nonlinear quadratic and cubic $\kappa-\omega$ models by Shih et al. and Craft et al. showed somewhat weaker anisotropic turbulence. The differential Reynolds stress model appeared to overpredict the turbulence anisotropy in the rod bundle.

  • PDF

분기좌굴이론을 이용한 박판성형공정에서의 주름발생해석 (An analysis of the wrinkling initiation in sheet metal forming using bifurcation theory)

  • 김종봉;양동렬;윤정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.28-31
    • /
    • 1998
  • Wrinkling is one of the major defects in sheet metal products and may be also attributable to the wear of the tool. The initiation and growth of the wrinkles are influenced by many factors such as stress state, mechanical properites of the sheet material, geometry of the body, and contact condition. It is difficult to analyze the wrinkling initiation and growth considering the factors because the effects of the factors are very complex and the wrinkling behavior may show wide variation for small deviation of the factors. In this study, the bifurcation theory is introduced for the finite element analysis of wrinkling initiation and growth, All the above mentioned factors are conveniently considered by finite element method. The finite element formulation is based on the incremental deformation theory and elastic-plastic material modeling. The finite element analysis is carried out using the continuum-based resultant shell elements considering the planar anisotropy of the sheet metal. The proposed method is verified by employing to column buckling problem. And then, the initiation and growth of wrinkling in deep drawing of cylindrical cup are analyzed.

  • PDF

정사각 직관과 $180^{\circ}$ 곡관내 난류유동의 레이놀즈응력모형 적용 (Turbulent Flow through a Square Straight and Curved Duct with Reynolds Stress Models)

  • 전건호;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.771-776
    • /
    • 2000
  • Fine grid calculations are reported for the developing turbulent flow in a straight duct and a curved duct of square cross-section with a radius of curvature to hydraulic diameter ratio ${\delta}=R_c/H_H=3.357$ and a bend angle of 180 deg. A sequence of modeling refinements is introduced; the replacement of wall function by a fine mesh across the sublayer and a low Reynolds number second moment closure up to the near wall sublayer in which the non-linear return to isotropy model and the cubic-quasi-isotropy model for the pressure strain are adopted; and the introduction of a multiple source model for the exact dissipation rate equation. Each refinement is shown to lead to an appreciable improvement in the agreement between measurement and computation.

  • PDF

알루미늄 합금 판재 성형성 예측을 위한 유한요소해석 프로그램 개발 (Development of finite element analysis program for aluminum alloy sheets)

  • 김성태;문명수;정완진;윤정환;김윤근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.291-294
    • /
    • 2005
  • Recently, the usage of aluminum alloy is rapidly increasing in automobile industry to achieve weight reduction for fuel efficiency. However, design of forming process of aluminum is more difficult than steel because of poor formability and severe springback. Since applications of finite element analysis for the design of sheet metal forming process are actively performed, it is required to conduct proper consideration of aluminum material behavior. In this study, a plane stress yield function Yld2000(Yoon et al., 2000), proven to describe well the anisotropic behavior of aluminum alloy, is implemented for FE analysis. One element test is considered to verify the validity of implementation of Yld2000 model. In addition, cylindrical cup drawing test is performed to verify earing shape of a drawn cup.

  • PDF

분기좌굴이론의 탄소성 유한요소법에의 적용 (An Introduction of Bifurcation Algorithm into the Elastic-Plastic Finite Element Analysis)

  • 김종봉;양동열;윤정환
    • 소성∙가공
    • /
    • 제9권2호
    • /
    • pp.128-139
    • /
    • 2000
  • Wrinkling is one of the major defects in sheet metal products and may be also attributable to the wear of the tool. The initiation and growth of wrinkles are influenced by many factors such as stress state, mechanical properties of the sheet material, geometry of the body, and contact condition. It is difficult to analyze the wrinkling initiation and growth considering the factors because the effects of the factors are very complex and the wrinkling behavior may show a wide variation for small deviations of the factors. In this study, the bifurcation theory is introduced for the finite element analysis of wrinkling initiation and growth. All the above mentioned factors are conveniently considered by the finite element method. The finite element formulation is based on the incremental deformation theory and elastic-plastic elements considering the planar anisotropy of the sheet metal. The proposed method is verified by employing a column buckling problem. And then, the initiation and growth of wrinkling in deep drawing of cylindrical cup are analyzed.

  • PDF

Investigation of the effect of shell plan-form dimensions on mode-shapes of the laminated composite cylindrical shallow shells using SDSST and FEM

  • Dogan, Ali;Arslan, H. Murat
    • Steel and Composite Structures
    • /
    • 제12권4호
    • /
    • pp.303-324
    • /
    • 2012
  • This paper presents the mode-shape analysis of the cross-ply laminated composite cylindrical shallow shells. First, the kinematic relations of strains and deformation are given. Then, using Hamilton's principle, governing differential equations are developed for a general curved shell. Finally, the stress-strain relation for the laminated, cross-ply composite shells are obtained. By using some simplifications and assuming Fourier series as a displacement field, the governed differential equations are solved by the matrix algebra for shallow shells. Employing the computer algebra system called MATHEMATICA; a computer program has been prepared for the solution. The results obtained by this solution are compared with the results obtained by (ANSYS and SAP2000) programs, in order to verify the accuracy and reliability of the solution presented.