• 제목/요약/키워드: stress and strain distributions

검색결과 205건 처리시간 0.024초

확률함수를 이용한 비균질 Ti-6Al-4V 합금의 변형 및 파손해석 (Deformation and Failure Analysis of Heterogeneous Microstructures of Ti-6Al-4V Alloy using Probability Functions)

  • 김태원;고은영
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.685-692
    • /
    • 2004
  • A stochastic approach has been presented for superplastic deformation of Ti-6Al-4V alloy, and probability functions are used to model the heterogeneous phase distributions. The experimentally observed spatial correlation functions are developed, and microstructural evolutions together with superplastic deformation behavior have been investigated by means of the two-point and three-point probability functions. The results have shown that the probability varies approximately linearly with separation distance, and deformation enhanced probability changes during the process. The stress-strain behavior with the evolutions of probability function can be correctly predicted by the model. The finite element implementation using Monte Carlo simulation associated with reconstructed microstructures shows that better agreement with experimental data of failure strain on the test specimen.

축대칭 벌징형 하이드로포밍 공정에 대한 이론 및 실험적 연구 (Theoretical and Experimental Study of the Axisymmetric Fluid Pressure-Driven Hydroforming Process)

  • 양동열;최선준;정완진
    • 한국정밀공학회지
    • /
    • 제7권2호
    • /
    • pp.28-38
    • /
    • 1990
  • The study is concerned with the theoretical and experimental investigation of axisymmetric fluid pressure-driven hydroforming of sheet metal by forming over the die cavity. The rigid-plastic finite element method is employed to calculate the stress and strain distribution. The effect of blank size and die radius is also studied in the finite element analysis. Experiments are carried out for hydroforming of cold-rolled steel sheets under various process conditions. The computational results are compared with the experimental results for the forming pressure vs. pole displacement relations and strain distributions. Comparison has shown that theoretical predictions by the finite element method are in good agreement with the experiment with the experimental observations. Thus, it is shown that the rigid-plastic finite element method is effectively used in the analysis of axisymmetric fluid pressure-driven hydroforming process.

  • PDF

Effects of traffic characteristics on pavement responses at the road intersection

  • Yang, Qun;Dai, Jingwang
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.531-544
    • /
    • 2013
  • Compared with pavement structures of ordinary road sections, pavement structures in the intersection are exposed to more complex traffic characteristics which may exacerbates pavement distresses such as fatigue-cracking, shoving, shear deformation and rutting. Based on a field survey about traffic characteristics in the intersection conducted in Shanghai China, a three dimensional dynamic finite-element model was developed for evaluating the mechanistic responses in the pavement structures under different traffic characteristics, namely uniform speed, acceleration and deceleration. The results from this study indicated that : (1) traffic characteristics have significant effects on the distributions of the maximum principal strain (MPS) and the maximum shear stress (MSS) at the pavement surface; (2) vehicle acceleration or deceleration substantially impact the MPS and MSS at pavement surface and could increase the magnitude of them by 20 percent to 260 percent; (3) in the vertical direction, with the increase of vehicle deceleration rate, the location of the MPS peak value and the MSS peak value changes from the sub-surface layer to the pavement surface.

Influence of the roof lithological characteristics on rock burst: a case study in Tangshan colliery, China

  • Jienan, Pan;Zhaoping, Meng;Quanlin, Hou;Yiwen, Ju;Guofu, Li
    • Geomechanics and Engineering
    • /
    • 제1권2호
    • /
    • pp.143-154
    • /
    • 2009
  • Many factors influence occurrences of rock burst in coal mines, such as mining methods, control methods of the coal roof, lithological characteristics of the roof and floor, tectonic stress, groundwater and so on. Among those factors, lithological characteristics in the roof are the intrinsic controlling factors that affect rock burst during coal mining. Tangshan colliery is one of the coal mines that have suffered seriously from rock bursts in China. In this paper, based on the investigating the lithological characteristics of coal roofs and occurrence of rock bursts in Tangshan colliery, a numerical method is used to study the influence of roof lithological characteristics on rock burst potential. The results show that the lithological characteristics in the roof have an important impact on the distributions of stresses and elastic strain energy in coal seams and their surrounding rocks. Occurrences of rock bursts in this colliery have a close correlation with the thick-bedded, medium- to fine-grained sandstones in the roof. Such strata can easily cause severe stress concentration and accumulate enough energy to trigger rock bursts in the working face during mining operations.

축대칭 벌징형 하이드로포밍 공정에대한 이론 및 실험적 연구

  • 양동열;최선준;정완진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1990년도 춘계학술대회 논문집
    • /
    • pp.83-88
    • /
    • 1990
  • The study is concerned with the theoretical and experimental investigation of axisymmetric fluid pressure-drive hydronforming of sheet metal by forming over the die cavity. The rigid-plastic finite element method is employed to calculate the stress and strain distribution The effect of blank size and die radius is also studied in the finite element analysis. Experiments are carried out for hydroforming of cold rolled steel sheets under various process conditions. The computational results are compared with the experimental results for the forming pressure vs. pole displacement relations and strain distributions. Comparison has shown that theoretical predictions by the finite element method are in good agreement with the experimental observations. Thus, it is shown that the rigid-plastic finite element method is effectively used in the analysis of axisymmetric fluid pressure-driven hydroforming process.

점소성 유한요소법에 의한 이차원 절삭의 구성인선 해석 (Built-Up Edge Analysis of Orthogonal Cutting By Visco-Plastic Finite Element Method)

  • 김동식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 추계학술대회 논문집
    • /
    • pp.60-63
    • /
    • 1995
  • The behavior of the work materials in the chip-tool interface in extremely high strain rates and temperatures is more that of viscous liquids than that of normal solid metals. In these circumstances the principles of fluid mechanics can be invoked to describe the metal flow in the neighborhood of the cutting edge. In the present paper an Eulerian finite element model is presented that simulates metal flow in the vicinity of the cutting edge when machining a low carbon steel with carbide cutting tool. The work material is assumed to obey visco-plastic (Bingham solid) constitutive law and Von Mises criterion. Heat generation is included in the model, assuming adiabatic conditions within each element. the mechanical and thermal properties of the work material are accepted to vary with the temperature. The model is based on the virtual work-stream function formulation, emphasis is given on analyzing the formation of the stagnant metal zone ahead of the cutting edge. The model predicts flow field characteristics such as material velocity effective stress and strain-rate distributions as well as built-up layer configuration

  • PDF

High-fidelity numerical investigation on structural integrity of SFR fuel cladding during design basis events

  • Seo-Yoon Choi;Hyung-Kyu Kim;Min-Seop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.359-374
    • /
    • 2024
  • A high-fidelity numerical analysis methodology was proposed for evaluating the fuel rod cladding integrity of a Prototype Gen IV Sodium Fast Reactor (PGSFR) during normal operation and Design basis events (DBEs). The MARS-LMR code, system transient safety analysis code, was applied to analyze the DBEs. The results of the MARS-LMR code were used as boundary condition for a 3D computational fluid dynamics (CFD) analysis. The peak temperatures considering HCFs satisfied the cladding temperature limit. The temperature and pressure distributions were calculated by ANSYS CFX code, and applied to structural analysis. Structural analysis was performed using ANSYS Mechanical code. The seismic reactivity insertion SSE accident among DBEs had the highest peak cladding temperature and the maximum stress, as the value of 87 MPa. The fuel cladding had over 40 % safety margin, and the strain was below the strain limit. Deformation behavior was elucidated for providing relative coordinate data on each active fuel rod center. Bending deformation resulted in a flower shape, and bowing bundle did not interact with the duct of fuel assemblies. Fuel rod maximum expansion was generated with highest stress. Therefore, it was concluded that the fuel rod cladding of the PGSFR has sufficient structural safety margin during DBEs.

Seismic performance of the concrete-encased CFST column to RC beam joints: Analytical study

  • Ma, Dan-Yang;Han, Lin-Hai;Zhao, Xiao-Ling;Yang, Wei-Biao
    • Steel and Composite Structures
    • /
    • 제36권5호
    • /
    • pp.533-551
    • /
    • 2020
  • A finite element analysis (FEA) model is established to investigate the concrete-encased concrete-filled steel tubular (CFST) column to reinforced concrete (RC) beam joints under cyclic loading. The feasibility of the FEA model is verified by a set of test results, consisting of the failure modes, the exposed view of connections, the crack distributions and development, and the hysteretic relationships. The full-range analysis is conducted to investigate the stress and strain development process in the composite joint by using this FEA model. The internal force distributions of different components, as well as the deformation distributions, are analyzed under different failure modes. The proposed connections are investigated under dimensional and material parameters, and the proper constructional details of the connections are recommended. Parameters of the beam-column joints, including material strength, confinement factor, reinforcement ratio, diameter of steel tube to sectional width ratio, beam to column linear bending stiffness ratio and beam shear span ratio are evaluated. Furthermore, the key parameters affecting the failure modes and the corresponding parameters ranges are proposed in this paper.

평금형을 통한 중공형재 압출의 유한요소 해석 (Finite Element Analysis for Extrusion of Hollow Shaped Section Through Square Die)

  • 이춘만;이승훈;조종래
    • 소성∙가공
    • /
    • 제7권4호
    • /
    • pp.375-381
    • /
    • 1998
  • This paper presents development of finite element simulation program and analysis of hot extrusion through square dies with a mandrel. The design of extrusion dies is still an art rather than science. Die design for a new extrusion process is developed from through in-plant trials. In the present paper, a three-dimensional steady-state finite element simulation program is developed. Steady-state assumption is used for both the analyses of deformation and temperature. The developed program is effectively used to simulate hollow extrusion of several sections. Distributions of temperature effective strain rate, mean strain rate and mean stress are studied for an effective design of extrusion dies.

  • PDF

중공형재의 평금형 압출에 관한 연구 (A Study on Square Die Extrusion of Hollow Shape)

  • 이승훈;이춘만;조종래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 추계학술대회논문집
    • /
    • pp.14-19
    • /
    • 1996
  • This study presents development of finite element simulation program and analysis of hot extrusion through square dies with mandrel. The design of extrusion dies is still an art rather than science. Die design for a new extrusion is developed from through in-plant trials. In the present paper, three-dimensional steady-state finite element simulation program is developed. The developed system is effectively used to simulate extrusion of clamp shaped hollow section. The objective of the present paper is to study the possibility of integrating this method into the design of dies for extrusion of complex section. To obtain sound product, the distributions and effects of temperature, effective strain rate, mean strain rate and mean stress are studied.

  • PDF