• Title/Summary/Keyword: stress/strain control

Search Result 308, Processing Time 0.03 seconds

Pre-Exercise Protective Effects Against Renal Ischemic Reperfusion Injury in Hsp 70.1 Knockout Mice (Hsp70.1유전자결핍된 마우스에서 허혈 재관류 신장손상에 대한 전처치 운동의 보호효과)

  • Lee, Jin;Kim, Won-Kyu
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.555-560
    • /
    • 2010
  • The objective of this study was to investigate levels of serum creatinine, CuSOD and MnSOD protein expression in the kidney after renal ischemic reperfusion with pre-exercise using heat shock protein 70.1 in knock-out mice (KO). The C57/BL6 strain (Wild type: WT) and KO were divided into 4 groups as follows: Sham control group (Sham), pre-exercise group (Ex), pre-exercise +ischemia group (Ex+IR), and ischemia group (IR). CuSOD and MnSOD expression were significantly decreased (p<0.01, p<0.05) and blood creatinine concentration was significantly increased (p<0.01) in the IR group of KO. In contrast, CuSOD and MnSOD expression in the Ex+IR group of KO were higher than the IR group, while creatinine concentration was significantly lower. These results suggest that Hsp70 is directly correlated to renal ischemic reperfusion injury. Pre-exercise in renal ischemia might prevent or inhibit positive oxidative stress inhibitory effects by increasing anti-oxidative enzymes (CuSOD, MnSOD) within the kidney and improve to prevent renal function. Thus, pre-exercise may have a protective role against renal injury after renal ischemia.

Product Design and Manufacture on Safety Hook and X-jog for application in Hoist and Crane (호이스트 및 크레인에 적용 가능한 안전후크와 X-jog 제품 설계 및 제작)

  • Na, Hyun-Ho;Kim, Do-Jung;Choi, Ju-Seok;Oh, Woo-Jun;Park, Jae-Woong;Lee, Chon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we performed a study on prevention of the escape hoist heavy objects on the basis of the case of a disaster occurring during crane operations. A safety hook of the automatic fastening and coupling method by the conventional coupling method, the weight of the outside consisting of a combination of a safety ring structure was designed and manufactured. The main mechanism three-dimensional detail design and structural analysis confirmed the structure and stability of small strain than the allowable stress of the Safety Hook with X-jog through. Safety factor was confirmed to represent the average 1.5 to 1.2 higher than the safety factor to be considered in the general design structure. Therefore, Safety Hook and X-jog in the present study is to be operated upon structural stability is a structure attached to the hoist and crane are considered sufficient.

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.

Experimental Validation of Isogeometric Optimal Design (아이소-지오메트릭 형상 최적설계의 실험적 검증)

  • Choi, Myung-Jin;Yoon, Min-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.345-352
    • /
    • 2014
  • In this paper, the CAD data for the optimal shape design obtained by isogeometric shape optimization is directly used to fabricate the specimen by using 3D printer for the experimental validation. In a conventional finite element method, the geometric approximation inherent in the mesh leads to the accuracy issue in response analysis and design sensitivity analysis. Furthermore, in the finite element based shape optimization, subsequent communication with CAD description is required in the design optimization process, which results in the loss of optimal design information during the communication. Isogeometric analysis method employs the same NURBS basis functions and control points used in CAD systems, which enables to use exact geometrical properties like normal vector and curvature information in the response analysis and design sensitivity analysis procedure. Also, it vastly simplify the design modification of complex geometries without communicating with the CAD description of geometry during design optimization process. Therefore, the information of optimal design and material volume is exactly reflected to fabricate the specimen for experimental validation. Through the design optimization examples of elasticity problem, it is experimentally shown that the optimal design has higher stiffness than the initial design. Also, the experimental results match very well with the numerical results. Using a non-contact optical 3D deformation measuring system for strain distribution, it is shown that the stress concentration is significantly alleviated in the optimal design compared with the initial design.

Test methodology of acceleration life test on feeder cable assembly (Feeder Cable Assembly의 가속수명시험법 개발)

  • Han, Hyun Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.62-68
    • /
    • 2016
  • The feeder cable assembly is an automotive part used for telecommunication. If it malfunctions, the control and safety of the automobile can be put at risk. ALT (Accelerated Life Testing) is a testing process for products in which they are subjected to conditions (stress, strain, temperatures, etc.) in excess of their normal service parameters in an attempt to uncover faults and potential modes of failure in a short amount of time. Failure is caused by defects in the design, process, quality, or application of the part, and these defects are the underlying causes of failure or which initiate a process leading to failure. Thermal shock occurs when a thermal gradient causes different parts of an object to expand by different amounts. Thermal shock testing is performed to determine the ability of parts and components to withstand sudden changes in temperature. In this research, the main causes of failure of the feeder cable assembly were snapping, shorting and electro-pressure resistance failure. Using the Coffin-Manson model for ALT, the normal conditions were from Tmax = $80^{\circ}C$ to Tmin = $-40^{\circ}C$, the accelerated testing conditions were from Tmax = $120^{\circ}C$ to Tmin = $-60^{\circ}C$, the AF (Acceleration Factor) was 2.25 and the testing time was reduced from 1,000 cycles to 444 cycles. Using the Bxlife test, the number of samples was 5, the required life was B0.04%.10years, in the acceleration condition, 747 cycles were obtained. After the thermal shock test under different conditions, the feeder cable assembly was examined by a network analyzer and compared with the Weibull distribution modulus parameter. The results obtained showed good results in acceleration life test mode. For the same reliability rate, the testing time was decreased by a quarter using ALT.

Effect of Cordycepin-increased Cordyceps militaris Powder on Tissues Lipid Peroxidation and Antioxidative Activity in Carbon Tetrachloride-induced Hepatic Damage in Rats (Cordycepin이 사염화탄소 유발 간손상 흰쥐의 조직 과산화 지질 농도 및 항산화 활성에 미치는 영향)

  • Ahn, Hee-Young;Park, Kyu-Rim;Kim, Yu-Ra;Cha, Jae-Young;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.904-912
    • /
    • 2013
  • This study aimed to evaluate the protective effect of cordycepin-increased Cordyceps militaris strain on carbon tetrachloride ($CCl_4$)-induced hepatotoxicity and oxidative stress in rats. Male Sprague-Dawley rats were randomly divided into five groups (n=6) based on six dietary categories: normal (N), $CCl_4$ control (C), $CCl_4$ plus Paecilomyces japonica (CPJ) (3%, w/w), $CCl_4$ plus C. militaris (CCM) (3%, w/w), and $CCl_4$ plus cordycepin-increased C. militaris ($CCM{\alpha}$) (3%, w/w). The activities of the liver marker enzymes ALT, AST, and LDH and the levels of lipid peroxidation were increased in the $CCl_4$-treated groups, but these parameters were significantly decreased in the $CCM{\alpha}$ group. The TBARS content in the liver homogenate, microsome, and mitochondrial fractions of the C group was significantly elevated compared with the N group. However, in the $CCl_4$-treated groups, $CCM{\alpha}$ group was significantly lowered in the TBARS levels of hepatic homogenate and microsomal fractions. The C group showed a significant decrease in the levels of plasma and hepatic glutathione, whereas they were significantly increased in the $CCM{\alpha}$ group. Accordingly, cordycepin-increased C. militaris may be an ideal animal model for studying hepatoprotective effects.

Control of Bowing in Free-standing GaN Substrate by Using Selective Etching of N-polar Face (N-polar면의 선택적 에칭 방법을 통한 Free-standing GaN 기판의 Bowing 제어)

  • Gim, Jinwon;Son, Hoki;Lim, Tea-Young;Lee, Mijai;Kim, Jin-Ho;Lee, Young Jin;Jeon, Dae-Woo;Hwang, Jonghee;Lee, Hae-Yong;Yoon, Dae-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.30-34
    • /
    • 2016
  • In this paper, we report that selective etching on N-polar face by EC (electro-chemical)-etching effect on the reduction of bowing and strain of FS (free-standing)-GaN substrates. We applied the EC-etching to concave and convex type of FS-GaN substrates. After the EC-etching for FS-GaN, nano porous structure was formed on N-polar face of concave and convex type of FS-GaN. Consequently, the bowing in the convex type of FS-GaN substrate was decreased but the bowing in the concave type of FS-GaN substrate was increased. Furthermore, the FWHM (full width at half maximum) of (1 0 2) reflection for the convex type of FS-GaN was significantly decreased from 601 to 259 arcsec. In the case, we confirmed that the EC-etching method was very effective to reduce the bowing in the convex type of FS-GaN and the compressive stress in N-polar face of convex type of FS-GaN was fully released by Raman measurement.

Laterally Unbraced Length for Preventing Inelastic Lateral-Torsional Buckling of High-Strength Steel Beams (고강도 강재보의 비탄성 횡-비틀림좌굴 제어를 위한 횡지지 거리)

  • Park, Chang Hee;Lee, Cheol Ho;Han, Kyu Hong;Kim, Jin Ho;Lee, Seung Eun;Ha, Tae Hyu;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2013
  • In this study, lateral-torsional buckling (LTB) strength of high-strength H-beams built up from 800MPa tensile-strength steel was experimentally and analytically evaluated according to current lateral stability provisions (KBC 2009, AISC-LRFD 2010). The motivation was to evaluate whether or not current LTB provisions, which were originally developed for ordinary steel with different stress-strain characteristics, are still applicable to high-strength steel. Two sets of compact-section specimens with relatively low (Set A) or high (Set B) warping stiffness were prepared and tested under uniform moment loading. Laterally unbraced lengths of the test specimens were controlled such that inelastic LTB could be induced. All specimens exhibited LTB strength exceeding the minimum limit required by current provisions by a sufficient margin. Moreover, some specimen in Set A reached a rotation capacity required for plastic design, although its laterally unbraced length belonged to the inelastic LTB range. All the test results indicated that extrapolation of current provisions to high-strength steel is conservative. In order to further analyze the test results, the relationship between inelastic moment and laterally unbraced length was also derived in explicit form for both ordinary- and high-strength steel based on the effective tangent modulus of inelastic section. The analytical relationship derived again showed that extrapolation of current laterally unbraced length limit leads to a conservative design in the case of high-strength steel and that the laterally unbraced length to control the inelastic LTB behavior of high-strength steel beam should be specified by including its unique post-yield strain-hardening characteristics.